DOI QR코드

DOI QR Code

Structural and Electrical Properties of K(Ta0.70Nb0.30)O3/K(Ta0.55Nb0.45)O3 Heterolayer Thin Films for Electrocaloric Devices

전기 열량 소자로의 응용을 위한 K(Ta0.70Nb0.30)O3/K(Ta0.55Nb0.45)O3 이종층 박막의 구조적, 전기적 특성

  • Byeong-Jun Park (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Ji-Su Yuk (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Sam-Haeng Yi (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Myung-Gyu Lee (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Joo-Seok Park (Business Support Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Sung-Gap Lee (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 박병준 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 육지수 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 이삼행 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 이명규 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 박주석 (한국세라믹기술원 기업지원본부) ;
  • 이성갑 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소)
  • Received : 2024.01.11
  • Accepted : 2024.01.31
  • Published : 2024.05.01

Abstract

In this study, KTN heterolayer thin films were fabricated by alternately stacking films of K(Ta0.70Nb0.30)O3 and K(Ta0.55Nb0.45)O3 synthesized using the sol-gel method. The sintering temperature and time were 750℃ and 1 hour, respectively. All specimens exhibited a polycrystalline pseudo-cubic crystal structure, with a lattice constant of approximately 0.398 nm. The average grain size was around 130~150 nm, indicating relatively uniform sizes regardless of the number of coatings. The average thickness of a single-coated film was approximately 70 nm. The phase transition temperature of the KTN heterolayer films was found to be approximately 8~12℃. Moreover, the 6-coated KTN heterolayer film displayed an excellent dielectric constant of about 11,000. As the number of coatings increased, and consequently the film thickness, the remanent polarization increased, while the coercive field decreased. The 6-coated KTN heterolayer film exhibited a remanent polarization and coercive field of 11.4 μC/cm2 and 69.3 kV/cm at room temperature, respectively. ΔT showed the highest value at a temperature slightly above the Curie temperature, and for the 6-coated KTN heterolayer film, the ΔT and ΔT/ΔE were approximately 1.93 K and 0.128×10-6 K·m/V around 40℃, respectively.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1 A6A1A03038697) and this work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1I1A3052426).

References

  1. X. Moya, S. Kar-Narayan, and N. D. Mathur, Nat. Mater., 13, 439 (2014).  doi: https://doi.org/10.1038/nmat3951
  2. J. Li, D. Zhang, S. Qin, T. Li, M. Wu, D. Wang, Y. Bai, and X. Lou, Acta Mater., 115, 58 (2016).  doi: https://doi.org/10.1016/j.actamat.2016.05.044
  3. A. K. Sagotra, D. Errandonea, and C. Cazorla, Nat. Commun., 8, 963 (2017).  doi: https://doi.org/10.1038/s41467-017-01081-7
  4. S. G. Lu and Q. Zhang, Adv. Mater., 21, 1983 (2009).  doi: https://doi.org/10.1002/adma.200802902
  5. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science, 311, 1270 (2006).  doi: https://doi.org/10.1126/science.1123811
  6. X. Moya, E. Stern-Taulats, S. Crossley, D. Gonzalez-Alonso, S. Kar-Narayan, A. Planes, L. Manosa, and N. D. Mathur, Adv. Mater., 25, 1360 (2013).  doi: https://doi.org/10.1002/adma.201203823
  7. D. H. Suh, D. H. Lee, and N. K. Kim, J. Eur. Ceram. Soc., 22, 219 (2002).  doi: https://doi.org/10.1016/S0955-2219(01)00278-3
  8. S. K. Upadhyay, V. R. Reddy, P. Bag, R. Rawat, S. M. Gupta, and A. Gupta, Appl. Phys. Lett., 105, 112907 (2014). doi: https://doi.org/10.1063/1.4896044
  9. J. E. Lim, M. G. Lee, B. J. Park, S. H. Lee, J. S. Park, Y. G. Kim, and S. G. Lee, J. Ceram. Process. Res., 23, 583 (2022).  doi: https://doi.org/10.36410/jcpr.2022.23.5.583
  10. M. S. Kwon, S. G. Lee, and K. M. Kim, J. Nanosci. Nanotechnol., 18, 5936 (2018).  doi: https://doi.org/10.1166/jnn.2018.15592
  11. M. S. Lee, B. J. Park, J. E. Lim, S. H. Lee, M. G. Lee, J. S. Park, and S. G. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 442 (2021).  doi: https://doi.org/10.4313/JKEM.2021.34.6.7
  12. C. J. Lu and A. X. Kuang, J. Mater. Sci., 32, 4421 (1997).  doi: https://doi.org/10.1023/A:1018692427602
  13. S. G. Lee, K. T. Kim, and Y. H. Lee, Thin Solid Films, 372, 45 (2000).  doi: https://doi.org/10.1016/S0040-6090(00)01030-0
  14. S. G. Lee and Y. H. Lee, Thin Solid Films, 353, 244 (1999).  doi: https://doi.org/10.1016/S0040-6090(99)00408-3
  15. J. Lin, Y. Li, X. Liu, Y. Li, W. Zheng, and W. Yang, RSC Adv., 10, 26256 (2020).  doi: https://doi.org/10.1039/D0RA03859H
  16. A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (Chapman and Hall, London, 1990), p. 68.
  17. S. G. Lee, I. G. Park, S. G. Bae, and Y. H. Lee, Jpn. J. Appl. Phys., 36, 6880 (1997).  doi: https://doi.org/10.1143/JJAP.36.6880
  18. J. W. Kim, J. S. Park, and S. G. Lee, J. Ceram. Process. Res., 22, 48 (2021).  doi: https://doi.org/10.36410/jcpr.2021.22.1.48
  19. D. Viehland, D. Forst, Z. Xu, and J. F. Li, J. Am. Ceram. Soc., 78, 2101 (1995).  doi: https://doi.org/10.1111/j.1151-2916.1995.tb08622.x
  20. X. Chen, S. Li, X. Jian, Y. Hambal, S. G. Lu, V. V. Shvartsman, D. C. Lupascu, and Q. M. Zhang, Appl. Phys. Lett., 118, 122904 (2021).  doi: https://doi.org/10.1063/5.0042333
  21. X. P. Wang, J. Y. Wang, H. J. Zhang, Y. G. Yu, J. Wu, W. L. Gao, and R. I. Boughton, J. Appl. Phys., 103, 033513 (2008).  doi: https://doi.org/10.1063/1.2838221
  22. X. Wang, F. Tian, C. Zhao, J. Wu, Y. Liu, B. Dkhil, M. Zhang, Z. Gao, and X. Lou, Appl. Phys. Lett., 107, 252905 (2015).  doi: https://doi.org/10.1063/1.4938134
  23. H. Maiwa, Jpn. J. Appl. Phys., 54, 10NB08 (2015).  doi: https://doi.org/10.7567/JJAP.54.10NB08
  24. S. Kar-Narayan and N. D. Mathur, J. Phys. D: Appl. Phys., 43, 032002 (2010).  doi: https://doi.org/10.1088/0022-3727/43/3/032002