DOI QR코드

DOI QR Code

막 기반 수소동위원소 분리 연구에 대한 총설

A Brief Review on Membrane-Based Hydrogen Isotope Separation

  • 소순형 (연세대학교 화공생명공학과) ;
  • 김대우 (연세대학교 화공생명공학과)
  • Soon Hyeong So (Department of Chemical and Biomolecular Engineering, YONSEI University) ;
  • Dae Woo Kim (Department of Chemical and Biomolecular Engineering, YONSEI University)
  • 투고 : 2024.03.20
  • 심사 : 2024.04.04
  • 발행 : 2024.04.30

초록

수소 동위 원소는 중성자 수에 따라 경수소, 중수소, 삼중수소로 분류될 수 있으며, 각 원소는 특정 분야에서 사용되고 있다. 구체적으로, 중수소는 전자 산업, 원자력에너지 산업, 분석기술 산업, 의약품 산업, 그리고 통신 산업에서 관심을 받고 있다. 냉각 증류, 열 주기 흡수 공정, Girdler sulfide 공정, 그리고 수전해와 같은 기존의 방법들은 각각의 장단점을 가지고 있지만, 공통적으로 막대한 에너지를 필요로 하는 공정에 기반한다는 문제점을 가지고 있다. 높은 에너지 효율을 보이는 기술을 기반으로 분리하는 공정의 개발이 요구되는 실정이다. 이런 맥락에서 막을 사용한 수소 동위 원소 분리 기술이 에너지 소비를 줄이는 유망한 해결책 중 하나라 볼 수 있다. 이 총설에서는 분리막을 활용한 수소 동위원소 분리에 관한 선행 연구와 그들의 작동 원리를 소개하고자 한다. 특히 최근 제시되고 있는, 그래핀 기반 전기적 펌핑을 통한 수소 동위원소 분리기술에 대하여 다루고자 한다. 분리막을 활용한 수소 동위원소 분리에 대한 기술은 이제 개념이 제안되기 시작한 단계이며, 많은 부분에서 해결해야 할 난제가 있다. 그러나 이를 달성할 경우 경제적인 효과가 상당할 것으로 판단된다. 이를 위한 향후 연구 방향에 대해서 논하고자 한다.

Hydrogen isotopes can be categorized into light hydrogen, heavy hydrogen, and tritium based on the number of neutrons, each of which is used in specific fields. Specifically, deuterium is of interest in the electronics industry, nuclear energy industry, analytical technology industry, pharmaceutical industry, and telecommunications industry. Conventional methods such as cold distillation, thermal cycling absorption processes, Girdler sulfide processes, and water electrolysis have their own advantages and disadvantages, leading to the need for alternative technologies with high separation and energy efficiency. In this context, membrane-based hydrogen isotope separation is one of the promising solutions to reduce energy consumption. In this review, we will present the state-of-the-art in hydrogen isotope separation using membranes and their operating principles. The technology for separating hydrogen isotopes using membranes is just beginning to be conceptualized, and many challenges remain to be overcome. However, if achieved, the economic benefits are expected to be significant. We will discuss future research directions for this purpose.

키워드

과제정보

This work was supported by the Industrial Strategic Technology Development Program ("Development of deuterium oxide localization and deuterium benzene synthesis technology to improve OLED lifetime by 25%", "20022479") funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

참고문헌

  1. W. R. Browne and J. G. Vos, "The effect of deuteriation on the emission lifetime of inorganic compounds", Coord. Chem. Rev., 219-221, 761-787 (2001). https://doi.org/10.1016/S0010-8545(01)00366-6
  2. J. Yao, S. C. Dong, B. S. T. Tam, and C. W. Tang, "Lifetime enhancement and degradation study of blue OLEDs using deuterated materials", ACS Appl. Mater. Interfaces., 15, 7255-7262 (2023). https://doi.org/10.1021/acsami.2c22882
  3. 박철호, 조성배 and 최동훈, "중수소 기반 전자소재 산업 연구 동향", 인포메이션 디스플레이 = Information Display, 21, 19-27 (2020). https://doi.org/10.1080/15980316.2019.1688694
  4. J. W. Lyding, K. Hess, and I. C. Kizilyalli, "Reduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing", Appl. Phys. Lett., 68, 2526-2528 (1996). https://doi.org/10.1063/1.116172
  5. X. Xiao, H. T. Sessions, and R. Rabun, "Advanced isotope separation technology for fusion fuel", Fusion. Sci. Techno., 78, 253-257 (2022). https://doi.org/10.1080/15361055.2021.1982331
  6. F. Li, C. Pei, and R. M. Koenigs, "Photocatalytic gem-difluoroolefination reactions by a formal C-C coupling/defluorination reaction with diazoacetates", Angew. Chem. Int. Ed., 61, e202111892 (2022).
  7. G. Zaccai, "How soft is a protein? A protein dynamics force constant measured by neutron scattering", Science, 288, 1604-1607 (2000). https://doi.org/10.1126/science.288.5471.1604
  8. J. Atzrodt, V. Derdau, W. J. Kerr, and M. Reid, "Deuterium- and tritium-labelled compounds: Applications in the life sciences", Angew. Chem. Int. Ed., 57, 1758-1784 (2018). https://doi.org/10.1002/anie.201704146
  9. J. Stone, "Reduction of OH absorption in optical fibers by OH → OD isotope exchange", Ind. Eng. Chem. Prod. Res. Dev., 25, 609-621 (1986). https://doi.org/10.1021/i300024a603
  10. F. Huang and C. Meng, "Method for the production of deuterium-depleted potable water", Ind. Eng. Chem. Res., 50, 378-381 (2011). https://doi.org/10.1021/ie101820f
  11. S. H. So and H. Oh, "A mini-review of the current progress and future challenges of zeolites for hydrogen isotopes separation through a quantum effect", Int. J. Hydrogen Energy, 50, 539-560 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.241
  12. L. K. Heung, H. T. Sessions, and X. Xiao, "Apparatus and process for separating hydrogen isotopes", US Patent 8,470,073, June 25 (2013).
  13. G. Huang, D. Wang, L. Hu, J. Bao, Y. Song, X. Yan, R. Xiong, T. Tang, and W. Luo, "Thermal cycling absorption process: A simple, efficient and safe strategy for hydrogen isotope separation", Int. J. Hydrogen Energy, 57, 8-25 (2024). https://doi.org/10.1016/j.ijhydene.2023.12.283
  14. N. Zeng, C. Hu, C. Lv, A. Liu, L. Hu, Y. An, P. Li, M. Chen, X. Zhang, M. Wen, K. Chen, Y. Yao, J. Cai, and T. Tang, "Large-current density and high-durability proton exchange membrane water electrolysis for practical hydrogen isotope separation", Sep. Purif. Technol., 310, 123148 (2023).
  15. H. Iwahara, "Hydrogen pumps using proton-conducting ceramics and their applications", Solid State Ionics, 125, 271-278 (1999). https://doi.org/10.1016/S0167-2738(99)00185-X
  16. M. Lozada-Hidalgo, S. Zhang, S. Hu, A. Esfandiar, I. V. Grigorieva, and A. K. Geim, "Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping", Nature Communications, 8, 15215 (2017).
  17. H. Wang, W. Li, H. Liu, Z. Wang, X. Gao, X. Zhang, Y. Guo, M. Yan, S. Zhang, L. Sun, H. Liu, Z. Wang, and H. Peng, "Palladium-assisted transfer of graphene for efficient hydrogen isotope separation", ACS Appl. Nano Mater., 6, 12322-12329 (2023). https://doi.org/10.1021/acsanm.3c02000
  18. S. Bukola, Y. Liang, C. Korzeniewski, J. Harris, and S. Creager, "Selective proton/deuteron transport through Nafion|graphene|Nafion sandwich structures at high current density", J. Am. Chem. Soc., 140, 1743-1752 (2018). https://doi.org/10.1021/jacs.7b10853
  19. X. Zhang, H. Wang, T. Xiao, X. Chen, W. Li, Y. Xu, J. Lin, Z. Wang, H. Peng and S. Zhang, "Hydrogen isotope separation using graphene-based membranes in liquid water", Langmuir, 39, 4975-4983 (2023). https://doi.org/10.1021/acs.langmuir.2c03453
  20. K. Harada, R. Tanii, H. Matsushima, M. Ueda, K. Sato, and T. Haneda, "Effects of water transport on deuterium isotope separation during polymer electrolyte membrane water electrolysis", Int. J. Hydrogen Energy, 45, 31389-31395 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.256
  21. X. Xue, M. Zhang, F. Wei, C. Liang, J. Liang, J. Li, W. Cheng, K. Deng, and W. Liu, "Gold as an efficient hydrogen isotope separation catalyst in proton exchange membrane water electrolysis", Int. J. Hydrogen Energy, 47, 26842-26849 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.052
  22. J. Xu, R. Li, X. Yan, Q. Zhao, R. Zeng, J. Ba, Q. Pan, X. Xiang, and D. Meng, "Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction", Nano Res., 15, 3952-3958 (2022). https://doi.org/10.1007/s12274-022-4075-2
  23. X. Xue, X. Chu, M. Zhang, F. Wei, C. Liang, J. Liang, J. Li, W. Cheng, K. Deng, and W. Liu, "High hydrogen isotope separation efficiency: Graphene or catalyst?", ACS Appl. Mater. Interfaces., 14, 32360-32368 (2022). https://doi.org/10.1021/acsami.2c06394
  24. A. Mohammadi, M. R. Daymond, and A. Docoslis, "Graphene oxide membranes for isotopic water mixture filtration: Preparation, physicochemical characterization, and performance assessment", ACS Appl. Mater. Interfaces., 12, 34736-34745 (2020). https://doi.org/10.1021/acsami.0c04122
  25. A. F. M. Ibrahim, F. Banihashemi, and Y. S. Lin, "Graphene oxide membranes with narrow inter-sheet galleries for enhanced hydrogen separation", Chem. Commun., 55, 3077-3080 (2019). https://doi.org/10.1039/C8CC10283J
  26. W. Choi, S. E. Choi, J. S. Seol, J. P. Kim, M. Kim, H. Ji, O. Kwon, H. Kim, K. C. Kim, and D. W. Kim, "Polyethylene oxide-intercalated nanoporous graphene membranes for ultrafast H2/CO2 separation: Role of graphene confinement effect on gas molecule binding", J. Membr. Sci., 660, (2022).
  27. J. H. Kang, T. Kim, J. Choi, J. Park, Y. S. Kim, M. S. Chang, H. Jung, K. T. Park, S. J. Yang, and C. R. Park, "Hidden second oxidation step of hummers method", Chem. Mater., 28, 756-764 (2016). https://doi.org/10.1021/acs.chemmater.5b03700
  28. J. H. Kim, Y. Choi, J. Kang, E. Choi, S. E. Choi, O. Kwon, and D. W. Kim, "Scalable fabrication of deoxygenated graphene oxide nanofiltration membrane by continuous slot-die coating", J. Membr. Sci., 612, 118454 (2020).
  29. J. Kang, Y. Ko, J. P. Kim, J. Y. Kim, J. Kim, O. Kwon, K. C. Kim, and D. W. Kim, "Microwave-assisted design of nanoporous graphene membrane for ultrafast and switchable organic solvent nanofiltration", Nat. Commun., 14, 901 (2023).
  30. Q. Hou, Y. Wu, S. Zhou, Y. Wei, J. Caro, and H. Wang, "Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation", Angew. Chem. Int. Ed., 58, 327-331 (2019). https://doi.org/10.1002/anie.201811638
  31. J. Kim, J. Kang, J. P. Kim, J. Y. Kim, J. H. Kim, O. Kwon, and D. W. Kim, "Scalable fabrication of nanoporous multilayer graphene oxide membrane for organic solvent nanofiltration", Carbon, 207, 162-171 (2023). https://doi.org/10.1016/j.carbon.2023.03.008
  32. J. Jang, Y. T. Nam, D. Kim, Y. J. Kim, D. W. Kim, and H. T. Jung, "Turbostratic nanoporous carbon sheet membrane for ultrafast and selective nanofiltration in viscous green solvents", J. Mater. Chem. A., 8, 8292-8299 (2020). https://doi.org/10.1039/D0TA00804D
  33. D. W. Kim, H. Kim, M. L. Jin, and C. J. Ellison, "Impermeable gas barrier coating by facilitated diffusion of ethylenediamine through graphene oxide liquid crystals", Carbon, 148, 28-35 (2019). https://doi.org/10.1016/j.carbon.2019.03.039
  34. K. M. Cho, Y. So, S. E. Choi, O. Kwon, H. Park, J. Chan Won, H. Kim, H. T. Jung, Y. H. Kim, and D. W. Kim, "Highly conductive polyimide nanocomposite prepared using a graphene oxide liquid crystal scaffold", Carbon, 169, 155-162 (2020). https://doi.org/10.1016/j.carbon.2020.07.051
  35. L. Zhang, T. Wulf, F. Baum, W. Schmidt, T. Heine, and M. Hirscher, "Chemical affinity of Ag-exchanged zeolites for efficient hydrogen isotope separation", Inorg. Chem., 61, 9413-9420 (2022). https://doi.org/10.1021/acs.inorgchem.2c00028
  36. R. Xiong, J. Chen, L. Zhang, P. Li, X. Yan, Y. Song, W. Luo, T. Tang, G. Sang, and M. Hirscher, "Hydrogen isotopes separation in Ag(I) exchanged ZSM-5 zeolite through strong chemical affinity quantum sieving", Micropor. Mesopor. Mat., 313, 110820 (2021).
  37. R. Xiong, L. Zhang, P. Li, W. Luo, T. Tang, B. Ao, G. Sang, C. Chen, X. Yan, J. Chen, and M. Hirscher, "Highly effective hydrogen isotope separation through dihydrogen bond on Cu(I)-exchanged zeolites well above liquid nitrogen temperature", Chem. Eng. J., 391, 123485 (2020).
  38. M. Y. Jeon, D. Kim, P. Kumar, P. S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H. S. Lee, K. Narasimharao, S. N. Basahel, S. Al-Thabaiti, W. Xu, H. J. Cho, E. O. Fetisov, R. Thyagarajan, R. F. Dejaco, W. Fan, K. A. Mkhoyan, J. I. Siepmann, and M. Tsapatsis, "Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets", Nature, 543, 690-694 (2017). https://doi.org/10.1038/nature21421
  39. P. Kumar, D. W. Kim, N. Rangnekar, H. Xu, E. O. Fetisov, S. Ghosh, H. Zhang, Q. Xiao, M. Shete, J. I. Siepmann, T. Dumitrica, B. McCool, M. Tsapatsis, and K. A. Mkhoyan, "One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-selective transport", Nat. Mater., 19, 443-449 (2020). https://doi.org/10.1038/s41563-019-0581-3