Acknowledgement
이 논문은 한국국토정보공사 공간정보연구원 산학협력R&D사업의 지원을 받아 수행된 연구임(과제명: 공간정보기반 인공지능분석을 활용한 농업용저수지의 가뭄대비 저수율 예측, 과제번호: 2023-501).
References
- H. Lim, H. An, G. Choi, J. Lee, and J. Do, "Prediction of pollution loads in agricultural reservoirs using LSTM algorithm: Case study of reservoirs in Nonsan City," Korean Journal of Agricultural Science, Vol.49, No.2, pp.193-202, 2022. https://doi.org/10.7744/KJOAS.20220016
- J. Jung, S. Kim, D. Kim, and S. Yang, "A study on the use of geospatial information-based simulation for preemptive response to water disasters in agricultural land," Smart Media Journal, Vol.11, No.7, pp.52-60, 2022. https://doi.org/10.30693/SMJ.2022.11.7.52
- Y. Seo, E. Choi, and W. Yeo, "Reservoir water level forecasting using machine learning models," Journal of the Korean Society of Agricultural Engineers, Vol.59, No.3, pp.97-110, 2017. https://doi.org/10.5389/KSAE.2017.59.3.097
- S. Jung, D. Lee, and K. Lee, "Prediction of river water level using deep-learning open library," Journal of the Korean Society of Hazard Mitigation, Vol.18, No.1, pp.1-11, 2018. https://doi.org/10.9798/KOSHAM.2018.18.1.1
- H. Sak, A. W. Senior, and F. Beaufays, "Long short-term memory recurrent neural network architectures for large scale acoustic modeling," 2014.
- H. Han, C. Choi, J. Jung, and H. Kim, "Application of sequence to sequence learning based LSTM model (LSTMs2s) for forecasting dam inflow," Journal of Korea Water Resources Association, Vol.54, No.3, pp.157-166, 2021.
- M. Yang, W. Nam, H. Kim, T. Kim, A. Shin, and M. Kang, "Anomaly detection in reservoir water level data using the LSTM model based on deep learning," Journal of the Korean Society of Hazard Mitigation, Vol.21, No.1, pp.71-81, 2021. https://doi.org/10.9798/KOSHAM.2021.21.1.71
- Y. Seong, K. Park, and Y. Jung, "Flow rate prediction at Paldang Bridge using deep learning models," Journal of Korea Water Resources Association, Vol.55, No.8, pp.565-575, 2022.
- K. Cho, B. V. Merrienboer, C. Gulcehre, D.Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, "Learning phrase representations using RNN encoder-decoder for statistical machine translation," arXiv preprint arXiv:1406.1078, 2014.
- Joh. Sunguk, and Lee, Yangwon. "Prediction of Water Storage Rate for Agricultural Reservoirs Using Univariate and Multivariate LSTM Models," Korean Journal of Remote Sensing 39.5 (2023): 1125-1134.
- M. Das, S. K. Ghosh, V. M. Chowdary, A.Saikrishnaveni, and R. K. Sharma, "A probabilistic nonlinear model for forecasting daily water level in reservoir," Water Resources Management, Vol.30, pp.3107-3122, 2016.
- RAWRIS [Internet], https://rawris.ekr.or.kr
- KMA Weather Data Service [Internet], https://data.kma.go.kr
- H. L. Penman, "Natural evaporation from open water, bare soil and grass," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol.193, No.1032, pp.120-145, 1948.
- H. Salehinejad, S. Sankar, J. Barfett, E.Colak, and S. Valaee, "Recent advances in recurrent neural networks," arXiv preprint arXiv:1801.01078, 2017.
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
- A. Paszke et al., "Pytorch: An imperative style, highperformance deep learning library," Advances in Neural Information Processing Systems, Vol.32, 2019.