DOI QR코드

DOI QR Code

모빌리티 전용 저장장치의 고온 고장 방지를 위한 온도 관리 시스템 설계

A Design of Temperature Management System for Preventing High Temperature Failures on Mobility Dedicated Storage

  • 이현섭 (백석대학교 컴퓨터공학부)
  • Hyun-Seob Lee (Division of Computer Engineering, Baekseok University)
  • 투고 : 2024.02.15
  • 심사 : 2024.03.12
  • 발행 : 2024.04.30

초록

모빌리티 기술의 급격한 성장으로 산업 분야의 수요는 차량 내에 다양한 장비와 센서의 데이터를 안정적으로 처리할 수 있는 저장장치를 요구하고 있다. NAND 플래시 메모리는 외부에 강한 충격뿐만 아니라 저전력, 빠른 데이터 처리 속도의 장점이 있기 때문에 모빌리티 환경의 저장장치로 활용되고 있다. 그러나 플래시 메모리는 고온에 장기 노출될 경우 데이터 손상이 발생할 수 있는 특징이 있다. 따라서 태양 복사열 등 날씨나 외부 열원에 의한 고온 노출이 빈번한 모빌리티 환경에서는 온도를 관리하기 위한 전용 시스템이 필요하다. 본 논문은 모빌리티 환경에서 저장장치 온도 관리하기 위한 전용 온도 관리 시스템을 설계한다. 설계한 온도 관리 시스템은 전통적인 공기 냉각 방식과 수 냉각방식의 기술을 하이브리드로 적용하였다. 냉각 방식은 저장장치의 온도에 따라 적응형으로 동작하도록 설계하였으며, 온도 단계가 낮을 경우 동작하지 않도록 설계하여 에너지 효율을 높였다. 마지막으로 실험을 통해 각 냉각방식과 방열재질의 차이 따른 온도 차이를 분석하였고, 온도 관리 정책이 성능을 유지하는데 효과가 있음을 증명하였다.

With the rapid growth of mobility technology, the industrial sector is demanding storage devices that can reliably process data from various equipment and sensors in vehicles. NAND flash memory is being utilized as a storage device in mobility environments because it has the advantages of low power and fast data processing speed as well as strong external shock resistance. However, flash memory is characterized by data corruption due to long-term exposure to high temperatures. Therefore, a dedicated system for temperature management is required in mobility environments where high temperature exposure due to weather or external heat sources such as solar radiation is frequent. This paper designs a dedicated temperature management system for managing storage device temperature in a mobility environment. The designed temperature management system is a hybrid of traditional air cooling and water cooling technologies. The cooling method is designed to operate adaptively according to the temperature of the storage device, and it is designed not to operate when the temperature step is low to improve energy efficiency. Finally, experiments were conducted to analyze the temperature difference between each cooling method and different heat dissipation materials, proving that the temperature management policy is effective in maintaining performance.

키워드

과제정보

This paper was supported by 2023 Baekseok University Research Fund

참고문헌

  1. H.S.Lee, "High Efficiency Life Prediction and Exception Processing Method of NAND Flash Memory-based Storage using Gradient Descent Method," Journal of Convergence for Information Technology, Vol.11, No.11, pp.44-50, 2021 https://doi.org/10.22156/CS4SMB.2021.11.11.044
  2. H.S.Lee, "A Safety IO Throttling Method Inducting Differential End of Life to Improving the Reliability of Big Data Maintenance in the SSD based RAID," Journal of Digital Convergence, Vol.20, No.5, pp.593-598, 2022. https://doi.org/10.14400/JDC.2022.20.5.593
  3. H.S.Lee, "Performance analysis and prediction through various over-provision on NAND flash memory based storage," Journal of Digital Convergence, Vol.20, No.3, pp.343-348, 2022. https://doi.org/10.14400/JDC.2022.20.3.343
  4. H.S.Lee, "A Memory Mapping Technique to Reduce Data Retrieval Cost in the Storage Consisting of Multi Memories," Journal of Internet of Things and Convergence, Vol.9, No.1, pp.19-24, 2023. https://doi.org/10.20465/KIOTS.2023.9.1.019
  5. H.S.Lee, "A Study on Characteristics and Techniques that Affect Data Integrity for Digital Forensic on Flash Memory-Based Storage Devices," Journal of Internet of Things and Convergence, Vol.9, No.3, pp.7-12, 2023. https://doi.org/10.20465/KIOTS.2023.9.3.007
  6. H.S.Lee, "An Efficient SLC Transition Method for Improving Defect Rate and Longer Lifetime on Flash Memory," Journal of Internet of Things and Convergence, Vol.9, No.3, pp.81-86, 2023. https://doi.org/10.20465/KIOTS.2023.9.3.081
  7. H.S.Lee, "An Efficient SLC Transition Method for Improving Defect Rate and Longer Lifetime on Flash Memory," Journal of Internet of Things and Convergence, Vol.9, No.3, pp.81-86, 2023. https://doi.org/10.20465/KIOTS.2023.9.3.081
  8. https://news.kbs.co.kr/news/view.do?ncd=5517938, Korean Broadcasting System NEWS, 2022.
  9. Samsung Electronics, "For Data Centers, S.M.A.R.T, Self-Monitoring, Analysis and Reporting Technology," Application Note, 2014.
  10. Y.Wang, J.Tan, R.Mao and T.Li, "Temperature-Aware Persistent Data Management for LSM-Tree on 3-D NAND Flash Memory," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol.39, No.12, pp.4611-4622, 2020. https://doi.org/10.1109/TCAD.2020.2982623
  11. M.R.Amini, H.Wang, X.Gong, D.L.McPherson, I.Kolmanovsky and J.Sun, "Cabin and battery thermal management of connected and automated HEVs for improved energy efficiency using hierarchical model predictive control," IEEE Transactions on Control Systems Technology, Vol.28, No.5, pp.1711-1726, 2019.
  12. J.Coutet, F.Marc, F.Dozolme, R.Guetard, A.Janvresse, P.Lebosse, A.Pastre and J.C.Clement, "Influence of temperature of storage, write and read operations on multiple level cells NAND flash memories," Microelectronics Reliability, Vol.88, pp.61-66, 2018. https://doi.org/10.1016/j.microrel.2018.06.088
  13. B.Govoreanu, J.V.Houdt, "On the roll-off of the activation energy plot in high tempreature flash memory retention tests and its impact on the reliability assessment," IEEE Electron Device Lett, Vol29, No.2, pp.177-179, 2008. https://doi.org/10.1109/LED.2007.914089
  14. B.D.Salvo, G.Ghibaudo, G.Pananakakis, G.Reimbold, F.Mondond, B.Guillaumot and P.Candelier, "Experimental and theoretical investigation of nonvolatile memory dataretention", IEEE Trans. Electron Devices, Vol46, No.7, pp.1518-1524, 1999. https://doi.org/10.1109/16.772505
  15. K. Lee, M. Kang, Y. Hwang, H. Shin, Accurate lifetime estimation of sub-20-nm NAND flash memory, IEEE Trans. Electron Devices, Vol.63, No.2, pp659-667, 2016. https://doi.org/10.1109/TED.2015.2509004