DOI QR코드

DOI QR Code

Adsorption of Azocarmine G dye on H2SO4-modified acacia sawdust

  • Celal Duran (Karadeniz Technical University, Faculty of Sciences, Department of Chemistry) ;
  • Sengul Tugba Ozeken (Karadeniz Technical University, Faculty of Sciences, Department of Chemistry) ;
  • Aslihan Yilmaz Camoglu (Karadeniz Technical University, Faculty of Sciences, Department of Chemistry) ;
  • Duygu Ozdes (Gumushane University, Gumushane Vocational School)
  • 투고 : 2023.07.15
  • 심사 : 2024.03.14
  • 발행 : 2024.01.25

초록

Presence of hazardous dyes in water cause considerable risks to the human health and environment due to their potential toxicity and ecological disruptions. Therefore, in the present research, to suggest an alternative method for the retention of toxic Azocarmine G (ACG) dye from aqueous media, natural and H2SO4-modified acacia sawdust were performed for the first time as low-cost and efficient adsorbents. Based on batch experiments, it was determined that the best conditions for the developed dye retention process were an initial pH of 2.0 and an equilibrium time of 240 min. Analysis of the data using both pseudo-first order and pseudo-second order kinetic models showed that the retention of ACG onto the adsorbents predominantly occurred through chemical adsorption. Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were employed to provide insights into the interaction between the adsorbate and adsorbent and the mechanism of the adsorption process. Maximum monolayer adsorption capacities of natural and H2SO4-modified acacia sawdust were determined as 28.01 and 64.90 mg g-1, respectively by Langmuir isotherm model. Results of the study clearly indicated that the modification of acacia sawdust with H2SO4 leads to a substantial increase in the adsorption performance of anionic dyes.

키워드

참고문헌

  1. Bonan, S., Fedrizzi, G., Menotta, S. and Elisabetta, C. (2013), "Simultaneous determination of synthetic dyes in foodstuffs and beverages by high-performance liquid chromatography coupled with diode-array detector", Dyes Pigments, 99(1), 36-40. https://doi.org/10.1016/j.dyepig.2013.03.029 
  2. Constantin, M., Asmarandei, I., Harabagiu, V., Ghimici, L., Ascenzi, P. and Fundueanu, G. (2013), "Removal of anionic dyes from aqueous solutions by an ion-exchanger based on pullulan microspheres", Carbohydr. Polym., 91(1), 74-84. https://doi.org/10.1016/j.carbpol.2012.08.005 
  3. Crini, G., Peindy, H.N., Gimbert, F. and Robert, C. (2007), "Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies", Sep. Purif. Technol., 53(1), 97-110. https://doi.org/10.1016/j.seppur.2006.06.018 
  4. Danish, M., Hashim, R., Mohamad Ibrahim, M.N. and Sulaiman, O. (2014), "Response surface methodology approach for methyl orange dye removal using optimized Acacia mangium wood activated carbon", Wood Sci. Technol., 48, 1085-1105. https://doi.org/10.1007/s00226-014-0659-7 
  5. Ding, R., Wu, H., Thunga, M., Bowler, N. and Kessler, M.R. (2016), "Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends", Carbon, 100, 126-136. https://doi.org/10.1016/j.carbon.2015.12.078. 
  6. Doltabadi, M., Alidadi, H. and Davoudi, M. (2016), "Comparative study of cationic and anionic dye removal from aqueous solutions using sawdust-based adsorbent", Environ. Prog. Sustain. Energy, 35(4), 1078-1090. https://doi.org/10.1002/ep.12334 
  7. Dubinin, M.M. and Radushkevich, L.V. (1947), "Equation of the characteristic curve of activated charcoal", Proceedings of the Academy of Sciences of the USSR, Physical Chemistry Section, 55, 331-333. 
  8. Freundlich, H.M.F. (1906), "Uber die adsorption in Losungen", Z. Phys. Chem., 57, 385-470. 
  9. Gupta, T.B. and Lataye, D.H. (2017), "Adsorption of indigo carmine dye onto acacia nilotica (babool) sawdust activated carbon", J. Hazard. Toxicol. Radioact. Waste, 21(4), 1-11. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000365 
  10. Hall, K.R., Eagleton, L.C., Acrivos, A. and Vermeulen, T. (1966), "Pore and solid diffusion kinetics in fixed bed adsorption under constant pattern conditions", Ind. Eng. Chem. Fund., 5(2), 212-223. http://doi.org/10.1021/i160018a011 
  11. Hameed, B.H. and El-Khaiary, M.I. (2008), "Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char", J. Hazard. Mater., 153(1-2), 701-708. https://doi.org/10.1016/j.jhazmat.2007.09.019 
  12. Hanafiah, M.A.K.M., Ngah, W.S.W., Zolkafly, S.H., Teong, L.C. and Majid, Z.A.A. (2012), "Acid Blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis", J. Environ. Sci., 24(2), 261-268. https://doi.org/10.1016/S1001-0742(11)60764-X 
  13. Helfferich, F. (1962), Ion Exchange, McGraw-Hill, New York.
  14. Ho, Y.S. and McKay G. (1998), "Kinetic models for the sorption of dye from aqueous solution by wood", Process Safe. Environ. Prot., 76(2), 183-191.  https://doi.org/10.1205/095758298529326
  15. Jain, M., Mudhoo, A. and Garg, V.K. (2011), "Swiss blue dye sequestration by adsorption using Acacia nilotica sawdust", Int. J. Environ. Technol. Manag., 14(1), 220-237.  https://doi.org/10.1504/IJETM.2011.039271
  16. Khalid, R., Aslam, Z., Abbas, A., Ahmad, W., Ramzan, N. and Shawabkeh, R. (2018), "Adsorptive potential of Acacia Nilotica based adsorbent for Chromium (VI) from an aqueous phase", Chin. J. Chem. Eng., 26(3), 614-622. https://doi.org/10.1016/j.cjche.2017.08.017 
  17. Khan, S.A., Shyamala, P., Kumar, K.R. and Suneetha, D. (2018), "Development of new cloud point extraction procedure using mixed micelles of TX-114 and DOSS for the determination of azocarmine G", J. Indian Chem. Soc., 95, 1085-1088. 
  18. Khan, M.A., Khan, M.I. and Zafar, S. (2017), "Removal of different anionic dyes from aqueous solution by anion exchange membrane", Membr. Water Treat., 8(3), 259-277. https://doi.org/10.12989/mwt.2017.8.3.259 
  19. Khan, M.I., Wu, L., Mondal, A.N., Yao, Z., Ge, L. and Xu, T. (2016), "Adsorption of methyl orange from aqueous solution on anion exchange membranes: Adsorption kinetics and equilibrium", Membr. Water Treat., 7(1), 23-38. http://doi.org/10.12989/mwt.2016.7.1.023 
  20. Kuhad, R.C., Sood, N., Tripathi, K.K., Singh, A. and Ward, O.P. (2004), "Developments in microbial methods for the treatment of dye effluents", Adv. Appl. Microbiol., 56, 185-213. http://doi.org/10.1016/S0065-2164(04)56006-9 
  21. Lagergren, S. (1898), "About the theory of so-called adsorption of soluble substance", Kungl. Svenska Vetenskapsakad. Handl., 24, 1-39. 
  22. Langmuir, I. (1918), "The adsorption of gases on plane surfaces of glass, mica and platinum", J. Am. Chem. Soc., 40(9), 1361-1403.  https://doi.org/10.1021/ja02242a004
  23. Lee, X.J., Hiew, B.Y.Z., Lai, K.C., Tee, W.T., Thangalazhy-Gopakumar, S., Gan, S. and Lee, L.Y. (2021), "Applicability of a novel and highly effective adsorbent derived from industrial palm oil mill sludge for copper sequestration: Central composite design optimisation and adsorption performance evaluation", J. Environ. Chem. Eng., 9(5), 105968. https://doi.org/10.1016/j.jece.2021.105968 
  24. Luan, J., Shen, Y., Wang, S. and Guo, N. (2017), "Synthesis, property characterization and photocatalytic activity of the Polyaniline/BiYTi2O7 polymer composite", Polymers, 9(3), 69. https://doi.org/10.3390/polym9030069 
  25. Mallakpour, S., Sirous, F. and Hussain, C.M. (2021), "Sawdust, a versatile, inexpensive, readily available bio-waste: From mother earth to valuable materials for sustainable remediation Technologies", Adv. Colloid Interf. Sci., 295, 102492. https://doi.org/10.1016/j.cis.2021.102492 
  26. Meena, A.K., Kadirvelu, K., Mishra, G.K., Rajagopal, C. and Nagar, P.N. (2008), "Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica)", J. Hazard. Mater., 150(3), 604-611. https://doi.org/10.1016/j.jhazmat.2007.05.030 
  27. Moharami, S. and Jalali, M. (2013), "Removal of phosphorus from aqueous solution by Iranian natural adsorbents", Chem. Eng. J., 223, 328-339. https://doi.org/10.1016/j.cej.2013.02.114 
  28. Moussavi, G. and Mahmoudi, M. (2009), "Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles", J. Hazard. Mater., 168(2-3), 806-812. https://doi.org/10.1016/j.jhazmat.2009.02.097 
  29. Naz, A., Masood, H., Ehsan, S. and Tahir, T. (2020), "Removal of acid black 1 by Acacia Concinna; adsorption kinetics, isotherm and thermodynamic study", Membr. Water Treat., 11(6), 407-416. https://doi.org/10.12989/mwt.2020.11.6.407 
  30. Nirmaladevi, S. and Palanisamy, N. (2020), "A comparative study of the removal of cationic and anionic dyes from aqueous solutions using biochar as an adsorbent", Desalin. Water Treat., 175, 282-292. https://doi.org/10.5004/dwt.2020.24906 
  31. Nirmaladevi, S. and Palanisamy, N. (2019), "Preperation and adsorptive properties of activated carbon from acacia leucophloea wood sawdust hydrochar by zinc chloride activation", Cellul. Chem. Technol., 53(9-10), 1029-1039. https://doi.org/10.35812/CelluloseChemTechnol.2019.53.101 
  32. Nirmaladevi, S. and Palanisamy, P.N. (2021), "Adsorptive behavior of biochar and zinc chloride activated hydrochar prepared from Acacia leucophloea wood sawdust: kinetic equilibrium and thermodynamic studies", Desalin. Water Treat., 209, 170-181. https://doi.org/10.5004/dwt.2021.26515 
  33. Onukwuli, O.D. and Obiora-Okafo, I.A. (2019), "Performance of polymer coagulants for colour removal from dye simulated medium: Polymer adsorption studies", Indian J. Chem. Technol., 26, 205-215. https://doi.org/10.56042/ijct.v26i3.14840 
  34. Rahman, N., Ullah, I., Alam, S., Khan, M.S., Shah, L.A., Zekker, I., Burlakovs, J., Kallistova, A., Pimenov, N., Vincevica-Gaile, Z., Jani, Y. and Zahoor, M. (2021), "Activated Ailanthus altissima sawdust as adsorbent for removal of acid yellow 29 from wastewater: Kinetics approach", Water, 13, 2136. https://doi.org/10.3390/w13152136 
  35. Serencam, H., Ozdes, D., Duran, C. and Senturk, H.B. (2014), "Assessment of kinetics, thermodynamics, and equilibrium parameters of Cu(II) adsorption onto Rosa canina seeds", Desalin. Water Treat., 52, 3226-3236. https://doi.org/10.1080/19443994.2013.797377 
  36. Sharma, P., Kaur, R., Baskar, C. and Chung, W.J. (2010), "Removal of methylene blue from aqueous waste using rice husk and rice husk ash", Desalination, 259(1-3), 249-257. https://doi.org/10.1016/j.desal.2010.03.044 
  37. Silva, J.S., Rosa, M.P., Beck, P.H., Peres, E.C., Dotto, G.L., Kessler, F. and Grasel, F.S. (2018), "Preparation of an alternative adsorbent from Acacia Mearnsii wastes through acetosolv method and its application for dye removal", J. Clean. Prod., 180, 386-394. https://doi.org/10.1016/j.jclepro.2018.01.201 
  38. Terangpi, P. and Chakraborty, S. (2017), "Adsorption kinetics and equilibrium studies for removal of acid azo dyes by aniline formaldehyde condensate", Appl. Water Sci., 7, 3661-3671. https://doi.org/10.1007/s13201-016-0510-4 
  39. Topaloglu, A.K. and Yildirim, Y. (2021), "Removal of reactive black 5 dye by using polyoxometalate-membrane", Membr. Water Treat., 12 (1), 23-35. https://doi.org/10.12989/mwt.2021.12.1.023 
  40. Tounsadi, H., Metarfi, Y., Barka, N., Taleb, M. and Rais, Z. (2020), "Removal of textile dyes by chemically treated sawdust of acacia: Kinetic and equilibrium studies", J. Chem. 2020, 7234218. https://doi.org/10.1155/2020/7234218 
  41. Wang, J. and Guo, X. (2020), "Adsorption isotherm models: Classification, physical meaning, application and solving method", Chemosphere, 258, 127279. https://doi.org/10.1016/j.chemosphere.2020.127279 
  42. Wang, S., Li, L., Wu, H. and Zhu, Z.H. (2005), "Unburned carbon as a low-cost adsorbent for treatment of methylene blue-containing wastewater", J. Colloid Interf. Sci., 292 (2), 336-343. https://doi.org/10.1016/j.jcis.2005.06.014 
  43. Weber, W.J. and Morris, J.C. (1963), "Kinetics of adsorption on carbon from solution", J. Sanitary Eng. Division, 89, 31-60.  https://doi.org/10.1061/JSEDAI.0000430
  44. Yin, Z., Li, Y., Song, T., Bao, M., Li, Y., Lu, J. and Li., Y. (2020), "Preparation of superhydrophobic magnetic sawdust for effective oil/water separation", J. Clean. Prod., 253, 120058. https://doi.org/10.1016/j.jclepro.2020.120058. 
  45. Yusop, M.F.M., Ahmad, M.A., Rosli, N.A. and Manaf, M.A.A. (2021), "Adsorption of cationic methylene blue dye using microwave-assisted activated carbon derived from acacia wood: Optimization and batch studies", Arab. J. Chem., 14(6), 103122. https://doi.org/10.1016/j.arabjc.2021.103122. 
  46. Zhang, Y., Huang, G., An, C., Xin, X., Liu, X., Raman, M., Yao, Y., Wang, W. and Doble, M. (2017), "Transport of anionic azo dyes from aqueous solution to gemini surfactant-modified wheat bran: Synchrotron infrared, molecular interaction and adsorption studies", Sci. Total Environ., 595, 723-732. https://doi.org/10.1016/j.scitotenv.2017.04.031.