References
- Adiga, S.P., Jin, C., Curtiss, L.A., Monteiro-Riviere, N.A. and Narayan, R. J. (2009), "Nanoporous membranes for medical and biological applications", Nanomed. Nanobiotech., 1(5), 568-581. https://doi.org/10.1002/wnan.50.
- Ariono, D., Aryanti, P.T.P., Wardani, A.K. and Wenten, I.G. (2018), "Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane", Membr. Water Treat., 9(5), 353-361. https://doi.org/10.12989/mwt.2018.9.5.353.
- Atkas, O. and Aluru, N.R. (2002), "A combined continuum/ DSMC technique for multiscale analysis of microfluidic filters", J. Comput. Phys., 178(2), 342-372. https://doi.org/10.1006/jcph.2002.7030.
- Baker, L.A. and Bird, S.P. (2008), "Nanopores: A makeover for membranes", Nature Nanotech., 3, 73-74. https://doi.org/10.1038/nnano.2008.13.
- Bottino, A., Capannelli, G., Comite, A., Ferrari, F. and Firpo, R. (2011), "Water purification from pesticides by spiral wound nanofiltration membrane", Membr. Water Treat., 2(1), 63-74. http://doi.org/10.12989/mwt.2011.2.1.063.
- Brown, C.E., Everett, D.H., Powell, A.V. and Thome, P.E. (1975), "Adsorption and structuring phenomena at the solid/liquid interface", Faraday Discus. Chem. Soc., 59, 97-108. https://doi.org/10.1039/DC9755900097.
- Cadotte, J.E., Petersen, R.J., Larson, R.E. and Erickson, E.E. (1980), "A new thin film composite seawater reverse osmosis membrane", Desali., 32(1), 25-31. https://doi.org/10.1016/S0011-9164(00)86003-8.
- Calabro, F., Lee, K.P. and Mattia, D. (2013), "Modelling flow enhancement in nanochannels: Viscosity and slippage", Appl. Math. Lett., 26(10), 991-994. https://doi.org/10.1016/j.aml.2013.05.004.
- Cohen-Tanugi, D., Lin, L.C. and Grossman, J.C. (2016), "Multilayer nanoporous graphene membranes for water desalination", Nano Lett., 16(2), 1027. https://doi.org/10.1021/acs.nanolett.5b04089.
- Oliveira, E.E.M., Barbosa, C.C.R. and Afonso, J.C. (2012), "Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium", Membr. Water Treat., 3(4), 231-242. http://doi.org/10.12989/mwt.2012.3.4.231.
- El-ghzizel, S., Jalte, H., Zeggar, H., Zait, M., Belhamidi, S., Tiyal, F., Hafsi, M., Taky, M. and Elmidaoui, A. (2019), "Autopsy of nanofiltration membrane of a decentralized demineralization plant", Membr. Water Treat., 10(4), 277-286. https://doi.org/0.12989/mwt.2019.10.4.277. https://doi.org/10.4.277
- Fissel, W.H., Dubnisheva, A., Eldridge, A.N., Fleischman, A.J., Zydney, A.L. and Roy, S. (2009), "High-performance silicon nanopore hemofiltration membranes", J. Membr. Sci., 326(1), 58-63. http://doi.org/10.1016/j.memsci.2008.09.039.
- Gennes de, P.G. (2002), "On fluid/wall slippage", Langmuir, 18, 3413-3414. https://doi.org/10.1021/la0116342
- Grosse-Rhode, M. and Findenegg, G.H. (1978), "Formation of ordered monolayers of n-alkanes at the cleavage face of nickel chloride", J. Coll. Interf. Sci., 1978, 64(2), 374-376. https://doi.org/10.1016/0021-9797(78)90375-2.
- Gruener, S., Wallacher, D., Greulich, S., Busch, M. and Huber, P. (2016), "Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and n-hexane", Phys. Rev. E, 93(1), 013102. https://doi.org/10.1103/PhysRevE.93.013102.
- Harrell, C.C., Siwy, Z.S. and Martin, C.R. (2006), "Conical nanopore membranes: Controlling the nanopore shape", Small, 2(2), 157. https://doi.org/10.1002/smll.200690004.
- Ho, T.A., Papavassiliou, D.V., Lee, L.L. and Striolo, A. (2011), "Liquid water can slip on a hydrophilic surface", PNAS, 108(39), 16170-16175. https://doi.org/10.1073/pnas.110518910.
- Holt, J.K., Park, H.G., Wang, Y., Staermandn, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A. and Bakajin, O. (2006), "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312(5776), 1034-1037. https://doi.org/10.1126/science.1126298.
- Huang, L., Zhang, M., Li, C. and Shi, G. (2015), "Graphene-based membranes for molecular separation", J. Phys. Chem. Lett., 6(14), 2806-2815. https://doi.org/10.1021/acs.jpclett.5b00914.
- Itoh, Y., Chen, S., Hirahara, R., Konda, T., Aoki, T., Ueda, T., Shimada, I., Cannon, J.J., Shao, C., Shiomi, J., Tabata, K.V., Noji, H., Sato, K. and Aida, T. (2022), "Ultrafast water permeation through nanochannels with a densely fluorous interior surface", Science, 376(6594), 738-743. https://doi.org/10.1126/science.abd0966.
- Jackson, E.A. and Hillmyer, M.A. (2010), "Nanoporous membranes derived from block copolymers: From drug delivery to water filtration", ACS Nano, 4(7), 3548-3553. http://doi.org/10.1021/nn1014006.
- Jiang, C.T. and Zhang, Y.B. (2022), "Direct matching between the flow factor approach model and molecular dynamics simulation for nanochannel flows", Sci. Rep., 12, 396. https://doi.org/10.1038/s41598-021-04391-5.
- Jiang, C.T. and Zhang, Y.B. (2024), "Comparisons between full molecular dynamics simulation and Zhang's multiscale scheme for nanochannel flows", J. Mol. Mod., In Press.
- Jiang, X.B., Shao, Y., Li, J., Wu, M., Niu, Y., Ruan, X., Yan, X., Li, X. and He, G. (2020), "Bioinspired hybrid micro/nanostructure composited membrane with intensified mass transfer and antifouling for high saline water membrane distillation", ACS Nano, 14(12), 17376-17386. https://doi.org/10.1021/acsnano.0c07543.
- Jin, Y., Choi, Y., Song, K.G., Kim, S. and Park, C. (2019), "Iron and manganese removal in direct anoxic nanofiltration for indirect potable resuse", Membr. Water Treat., 10(4), 299-305. https://doi.org/0.12989/mwt.2019.10.4.299. https://doi.org/10.4.299
- Kannam, S.K., Todd, B.D., Hansen, J.S. and Daivis, P.J. (2013), "How fast does water flow in carbon nanotubes?", J. Chem. Phys., 138, 094701. http://doi.org/10.1063/1.4793396.
- Koklu, A., Li, J., Sengor, S. and Beskok, A. (2017), "Pressure‑ driven water flow through hydrophilic alumina nanomembranes", Microfluid. Nanofluid., 21, 124. https://doi.org/10.1007/s10404-017-1960-1.
- Lin, W., Li, J. and Zhang, Y.B. (2022), "Mass transfer in the filtration membrane covering from macroscale, multiscale to nanoscale", Membr. Water Treat., 13(4), 167-172. https://doi.org/10.12989/mwt.2022.13.4.167.
- Liu, C. and Li, Z. (2011), "On the validity of the Navier-Stokes equations for nanoscale liquid flows: The role of channel size", AIP Adv., 1(3), 032108. https://doi.org/10.1063/1.3621858.
- Majumder, M., Chopra, N., Andrews, R. and Hinds, B.J. (2005), "Enhanced flow in carbon nanotubes", Nature, 438, 44. https://doi.org/10.1038/438044a.
- Mattia, D. and Calabro, F. (2012), "Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions", Microfluid. Nanofluid., 13, 125-130. https://doi.org/10.1007/s10404-012-0949-z.
- Meyer, E., Overney, R.M., Dransfeld, K. and Gyalog, T. (1998), Friction and Rheology on the Nanometer Scale, World Scientific Press, New Jersey, NJ, USA.
- Myers, T.G. (2011), "Why are slip lengths so large in carbon nanotubes?" Microfluid. Nanofluid., 10, 1141-1145. https://doi.org/10.1007/s10404-010-0752-7.
- Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V. and Geim, A.K. (2012), "Unimpeded permeation of water through helium- leak-tight graphene based membranes", Science, 335(6067), 442-444. https://doi.org/ 10.1126/science.1211694.
- Radha1, A., Esfandiar1, F., Wang, A.P., Rooney, K., Gopinadhan, A., Keerthi, A., Mishchenko, A., Janardanan, P., Fumagalli, M., Lozada-Hidalgo, S., Garaj, S.J., Haigh, I.V., Grigorieva, H.A. and Wu, A.K. (2016), "Molecular transport through capillaries made with atomic-scale precision", Nature, 538, 222-225. https://doi.org/10.1038/nature19363.
- Rozeanu, L. and Tipei, N. (1980), "Slippage phenomena at the interface between the adsorbed layer and the bulk of the lubricant: Theory and experiment", Wear, 64(2), 245-257. https://doi.org/10.1016/0043-1648(80)90131-3.
- Sanjay, R., Nagarajan, P., Sabyasachi, G., Subhadip, M., Suryasarathi, B. and Narayan, Ch.D. (2021), "Porous graphenebased membranes: Preparation and properties of a unique two-dimensional nanomaterial membrane for water purification", Separ. Purifi. Rev., 50(3), 262-282. https://doi.org/10.1080/15422119.2020.1725048.
- Secchi, E., Marbach, S., Nigues, A., Stein, D., Siria, A. and Bocquet, L. (2016), "Massive radius-dependent flow slippage in carbon nanotubes", Nature, 537, 210-213. https://doi.org/10.1038/nature19315.
- Shaat, M. (2017), "Viscosity of water interfaces with hydrophobic nanopores: Application to water flow in carbon nanotubes", Langmuir, 33(44), 12814-12819. https://doi.org/10.1021/acs.langmuir.7b02752.
- Sofos, F. (2021), "A water/ion separation device: theoretical and numerical investigation", Appl. Sci., 11(18), 8548. https://doi.org/10.3390/app11188548.
- Sofos, F., Karakasidis, T.E. and Liakopoulos, A. (2015), "Fluid structure and system dynamics in nanodevices for water desalination", Desali. Water Treat., 57(25), 11561-11571. https://doi.org/10.1080/19443994.2015.1049966.
- Stavrogiannis, C., Sofos, F., Karakasidis, T.E. and Vavougios, D. (2022), "Investigation of water desalination/purification with molecular dynamics and machine learning techniques", AIMS Mater. Sci., 9(6), 919-938. https://doi.org/10.3934/matersci.2022054.
- Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S. and Mahurin, S.M. (2015), "Water desalination using nanoporous single-layer grapheme", Nature Nanotech., 10, 459-464. https://doi.org/10.1038/nnano.2015.37.
- Thomas, J.A. and McGaughey, A.J.H. (2008), "Density, distribution, and orientation of water molecules inside and outside carbon nanotubes", J. Chem. Phys., 128(8), 084715. https://doi.org/10.1063/1.2837297.
- Thomas, J.A. and McGaughey, A.J.H. (2009), "Water flow in carbon nanotubes: Transition to subcontinuum transport", Phys. Rev. Lett., 102(18), 184502. https://doi.org/10.1103/PhysRevLett.102.184502.
- Tran-Duc, T., Phan-Thien, N. and Wang, J. (2019), "A theoretical study of permeability enhancement for ultrafiltration ceramic membranes with conical pores and slippage", Phys. Fluids, 31(2), 022003. https://doi.org/10.1063/1.5085140.
- Vinogradova, O.I. (1995), "Drainage of a thin liquid film confined between hydrophobic surfaces", Langmuir, 11, 2213-2220. https://doi.org/10.1021/la00006a059
- Wagemann, E., Walther, J.H., Cruz-Chu, E.R. and Zambrano, H.A. (2019), "Water flow in silica nanopores coated by carbon nanotubes from a wetting translucency perspective", J. Phys. Chem., 123(42), 25635-25642. https://doi.org/10.1021/acs.jpcc.9b05294.
- Walther, J.H., Ritos, K., Cruz-Chu, E.R., Megaridis, C.M. and Koumoutsakos, P. (2013), "Barriers to superfast water transport in carbon nanotube membranes", Nano Lett., 13(5), 1910-1914. https://doi.org/10.1021/nl304000k.
- Wang, L., Dumont, R. and Dickson, J.M. (2012), "Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure", J. Chem. Phys., 137(4), 044102. https://doi.org/ 10.1063/1.4734484.
- Wang, M. and Zhang, Y.B. (2022), "Water permeability through the wall of blood capillary", Front. Heat Mass Transf., 18, 7. http://doi.org/10.5098/hmt.18.7.
- Whitby, M. and Quirke, N. (2007), "Fluid flow in carbon nanotubes and nanopipes", Nature Nanotech., 2, 87-94. https://doi.org/10.1038/nnano.2006.175.
- Wu, K., Chen, Z., Li, J., Xu, J., Wang, K., Li, R., Wang, S. and Dong, X. (2019), "Ultrahigh water flow enhancement by optimizing nanopore chemistry and geometry", Langmuir, 35(26), 8867-8873. https://doi.org/10.1021/acs.langmuir.9b01179.
- Yen, T.H., Soong, C.Y. and Tzeng, P.Y. (2007), "Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows", Microfluid. Nanofluid., 3, 665-675. https://doi.org/10.1007/s10404-007-0154-7.
- Zhang, Y.B. (2004), "Modeling of molecularly thin film elastohydrodynamic lubrication", J. Balkan Trib. Assoc., 10(3), 394-421.
- Zhang, Y.B. (2006), "Flow factor of non-continuum fluids in one-dimensional contact", Industr. Lubri. Trib., 58(3), 151-169. https://doi.org/10.1108/00368790610661999.
- Zhang, Y.B. (2014), "Review of hydrodynamic lubrication with interfacial slippage", J. Balkan Trib. Assoc., 20(4), 522-538.
- Zhang, Y.B. (2015a), "The flow factor approach model for the fluid flow in a nano channel", Int. J. Heat Mass Transf., 89, 733-742. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.092
- Zhang, Y.B. (2015b), "A quantitative comparison between the flow factor approach model and the molecular dynamics simulation results for the flow of a confined molecularly thin fluid film", Theor. Comput. Fluid Dyn., 29, 193-204. https://doi.org/10.1007/s00162-015-0348-7
- Zhang, Y.B. (2016), "The flow equation for a nanoscale fluid flow", Int. J. Heat Mass Transf., 92(1), 1004-1008. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.008.
- Zhang, Y.B. (2020), "Modeling of flow in a very small surface separation", Appl. Math. Mod., 82, 573-586. https://doi.org/10.1016/j.apm.2020.01.069.