DOI QR코드

DOI QR Code

Temperature effects on the growth and morphology of Anabaena sp.: lab-scale investigation and onsite validation

  • Oh Kyung Choi (Bio Resource Center, Institute for Advanced Engineering) ;
  • Dong Hyuk Shin (Department of Environmental Engineering, Korea University) ;
  • Dandan Dong (Department of Environmental Engineering, Korea University) ;
  • Sung Kyu Maeng (Department of Civil and Environmental Engineering, Sejong University) ;
  • Jungsu Park (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Jae Woo Lee (Department of Environmental Engineering, Korea University)
  • Received : 2023.07.17
  • Accepted : 2024.03.05
  • Published : 2024.01.25

Abstract

This study presents the characteristics of growth and morphology of Anabaena sp., a representative filamentous cyanobacterium, depending on temperature variation from 10 to 30 ℃. Both the filament density (or number) and its length of Anabaena were highly affected by temperature, as well as growth stage. Rapid growth at a higher temperature led to an increase in Anabaena filament density, as well as optical density at 680 nm (OD680). However, the number of vegetative cells within a single filament of Anabaena grown at 30 ℃ was smaller than those grown at lower temperatures, due to the intercalary division of the filament. Of the three different cells comprising a single Anabaena filament, the vegetative cell marginally affects the growth of Anabaena. The main dimensions of the vegetative cell, i.e., length and width, depend on the temperature and growth stage. The length-to-width (L/W) ratios of vegetative cells and akinetes were relatively consistent regardless of the temperature. However, in vegetative cells with dichotomous growth, the L/W ratio shows clear differences depending on their growth stage. It has been demonstrated that the L/W ratio could be used as an indicator to indirectly predict the growth stage of on-sit Anabaena samples.

Keywords

Acknowledgement

This research was supported by the Korea Environmental Industry & Technology Institute (KEITI) through the Aquatic Ecosystem Conservation Research Program, funded by Korea Ministry of Environment (MOE) [2020003030006].

References

  1. Amand A.S., Dyble J., Aubel M., Chapman A., Eilers J. (2007) "Efficacy of molecular DNA methods for confirming species identifications on morphologically variable populations of toxin-producing Anabaena (Nostocales)", Lake Reserv. Manag., 23(2), 193-202. https://doi.org/10.1080/07438140709353922.
  2. Baek S.S., Pyo J., Pachepsky Y., Park Y., Ligaray M., Ahn C., Kim Y., Chun J.A., Cho K.W. (2020) "Identification and enumeration of cyanobacteria species using a deep neural network", Ecol. Indic., 115, 16395. https://doi.org/10.1016/j.ecolind.2020.106395.
  3. Bornikoel J., Carrion A., Fan Q., Flores E., Forchhammer K., Mariscal V., Mullineaux C.W., Perez R., Silber N., Wolk C.P., Maldener I. (2017) "Role of two cell wall amidases in septal junction and nanopore formation in the multicellular cyanobacterium Anabaena sp. PCC7120", Front. Cell. Infect. Microbiol., 7, 386. https://doi.org/10.3389/fcimb.2017.00386.
  4. Bowange R., Jayasinghe M., Yakandawala D., Kumara K., Abeynayake S., Ratnayake R. (2022) "Morphological characterization of culturable cyanobacteria isolated from selected extreme ecosystems of Sri Lanka", Ceylon J. Sci., 51(5), 577-588. https://doi.org/10.4038/cjs.v51i5.8084.
  5. Carpenter S.R., Caraco N.F., Correll D.L., Howarth R.W., Sharpley A.N., Smith V.H. (1998) "Nonpoint pollution of surface waters with phosphorus and nitrogen", Ecol. Appl., 8(3), 559-568. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO,2.
  6. Carmago S., Leshkowitz D., Dassa B., Mariscal V., Flores E., Stavans J., Arbel-Goren R. (2021) "Impaired cell-cell communication in the multicellular cyanobacterium Anabaena affects carbon uptake, photosynthesis, and the cell wall", Iscience, 24(1), 101977. https://doi.org/10.1016/j.isci.2020.101977.
  7. Cha Y., Cho K.H., Lee H., Kang T., Kim J.H. (2017) "The relative importance of water temperature and residence time in predicting cyanobacteria abundance in regulated rivers", Water Res., 124, 11-19. https://doi.org/10.1016/j.watres.2017.07.040.
  8. Chonudomkul D., Yongmanitchai W., Theeragool G., Kawachi M., Kasai F., Kaya K., Watanabe M.M. (2004) "Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan", FEMS Microbiol., 48(3), 345-355. https://doi.org/10.1016/j.femsec.2004.02.014
  9. Dong D., Seo D., Seo S., Lee J.W. (2018) "Flocculation of microalgae using extracellular polymeric substances (EPS) extracted from activated sludge", Membr. Water Treat., 9(3), 147-153. https://doi.org/10.12989/mwt.2018.9.3.147
  10. Garg R., Maldener I. (2021) "The dual role of the glycolipid envelope in different cell types of the multicellular cyanobacterium Anabaena variabilis ATCC 29413", Front. Microbiol., 12, 645028. https://doi.org/10.3389/fmicb.2021.645028
  11. Giannuzzi L. (2019) "Cyanobacteria Growth Kinetics", Algae, IntechOpen.
  12. Giordanino M.V.F., Strauch S.M., Villafarie V.E., Helbling E.W. (2011) "Influence of temperature and UVR on photosynthesis and morphology of four species of cyanobacteria", J. Photochem. Photobiol., 103(1), 68-77. https://doi.org/10.1016/j.jphotobiol.2011.01.013.
  13. Graham L.E., Graham J.M., Cook M.E., Wilcox L.W. (2016) Algae (the 3rd edition). LJLM Press. Madison, WI.
  14. Ishihara J.I., Tachikawa M., Iwasaki H., Mochizuki A. (2015) "Mathematical study of pattern formation accompanied by heterocyst differentiation in multicellular cyanobacterium", J. Theor. Biol., 371, 9-23. https://doi.org/10.1016/j.jtbi.2015.01.034.
  15. Kim S., Kim S., Mehrotra R., Sharma A. (2020) "Predicting cyanobacteria occurrence using climatological and environmental controls" Water Res., 175, 115639. https://doi.org/10.1016/j.watres.2020.115639.
  16. Kogure K., Simidu U., Taga N. (1979) "A tentative direct microscopic method for counting living marine bacteria", Can. J. Microbiol., 25(3), 415-420. https://doi.org/10.1139/m79-063.
  17. Kviderova J., Kumar D., Lukavsky J., Kastanek P., Adhikary S.P. (2019) "Estimation of growth and exopolysaccharide production by two soil cyanobacteria, Scytonema tolypothrichoides and Tolypothrix bouteillei as determined by cultivation in irradiance and temperature crossed gradients", Eng. Life Sci., 19(3), 184-195. https://doi.org/10.1002/elsc.201800082
  18. Kwak D., Kim T., Kim M. (2018) "Flotation of cyanobacterial particles without chemical coagulant under auto-flocculation", Membr. Water Treat. 9(6), 447-454. https://doi.org/10.12989/mwt.2018.9.6.447
  19. Liao J., Zhao L., Cao X., Sun J., Gao Z., Wang J., Jiang D., Fan H., Huang Y. (2016) "Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use", Sci. Rep., 6(1), 1-10. https://doi.org/10.1038/srep36357.
  20. Lind O., Davalos-Lind L., Lopez C., Lopez M., Bressie J.D. (2016) "Seasonal morphological variability in an in situ Cyanobacteria monoculture: example from a persistent Cylindrospermopsis bloom in Lake Catemaco, Veracruz, Mexico", J. Limnol., 75(s1), 66-80. https://doi.org/10.4081/jlimnol.2016.1190
  21. Martin-Figueroa E. Navarro F., Florencio F.J. (2000) "The GS-GOGAT pathway is not operative in the heterocysts. Cloning and expression of glsF gene from the cyanobacterium Anabaena sp. PCC 7120", FEBS Lett., 476(3), 282-286. https://doi.org/10.1016/S0014-5793(00)01722-1
  22. Meng S.L., Chen X., Wang J., Fan L.M., Qiu L.P., Zheng Y., Chen J.Z., Xu P. (2021) "Interaction effects of temperature, light, nutrient, and pH on growth and competition of Chlorella vulgaris and Anabaena sp. Strain PCC", Front. Environ. Sci., 9, 690191. https://doi.org/10.3389/fenvs.2021.690191
  23. Ministry of Environment (MOE) (2020), Korea standard methods for the examination of water quality, ES04705. 1b
  24. Han J.E., Park S.H., Yaqub M., Yun S.L., Kim S., Lee W. (2022) "Removal efficiency of various coagulants for Microcystis, Anabaena and Oscillatoria at different cell densities", Membr. Water Treat., 13(1), 15-20. https://doi.org/10.12989/mwt.2022.13.1.015
  25. Hence I., Meier H.E., Sonntag S. (2013) "Projected climate change impact on Baltic Sea cyanobacteria", Clim. Change 119(2), 391-406. https://doi.org/10.1007/s10584-013-0702-y.
  26. Huisman J., Codd G.A., Paerl H.W., Ibelings B.W., Verspagen J.M., Visser P.M. (2018) "Cyanobacterial blooms" Nat. Rev. Microbiol., 16(8), 471-483. https://doi.org/10.1038/s41579-018-0040-1.
  27. Rippka R., Deruelles J., Waterbury J.B. (1979) "Generic assignments, strain histories and properties of pure cultures of cyanobacteria", J. Gen. Microbiol., 111(1), 1-61. https://doi.org/10.1099/00221287-111-1-1.
  28. Sneha G.R., Hmbrom B.B., Varghese E., Yadav R.K., Abraham G. (2023) "Screening and selection of Anabaena spp. For desiccation tolerance through physiological parameters and multivariate analysis", J. Appl. Phycol., 1-12. https://doi.org/10.1007/s10811-023-02942-z.
  29. Thomas M.K., Litchman E. (2016) "Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria", Hydrobiologia 763(1), 357-369. https://doi.org/10.1007/s10750-015-2390-2.
  30. Velazquez-Suarez C., Luque I., Herrero A. (2020) "The inorganic nutrient regime and the mre genes regulate cell and filament size and morphology in the phototrophic multicellular bacterium Anabaena", mSphere, 5(5), e00747-20. https://doi.org/10.1128/msphere.00747-20
  31. WEIS (2023), Water Environment Information System; Ministry of Environment, Korea, Accessed 11 April 2023. https://water.nier.go.kr/web
  32. Waterbury J.B. (2006) "The cyanobacteria-isolation, purification and identification", The Prokayotes 4, 1053-1073. https://doi.org/10.1007/0-387-30744-3_38.
  33. Yan D., Xu H., Yang M., Lan J., Hou W., Wang F., Zhang J., Zhou K., An Z., Goldsmith Y. (2019) "Responses of cyanobacteria to climate and human activities at Lake Chenghai over the past 100 years", Ecol. Indic., 104, 755-763. https://doi.org/10.1016/j.ecolind.2019.03.019.
  34. Zhang J.Y., Lin G.M., Xing W.Y., Zhang C.C. (2018) "Diversity of growth patterns probed in live cyanobacterial cells using a fluorescent analog of a peptidoglycan precursor", Front. Microbiol., 9, 791. https://doi.org/10.3389/fmicb.2018.00791.