DOI QR코드

DOI QR Code

Development and Research of Thermal Management Equipment for Efficiency Enhancement of PEMFC Systems

PEMFC 시스템 효율 향상을 위한 열 관리 설비 개발 및 연구

  • JAEHWAN KIM (Department of Mechanical Engineering, Inha University Graduate School) ;
  • JISEUNG LEE (Department of Mechanical Engineering, Inha University Graduate School) ;
  • INSEAK KANG (Technology Commercialization Team, Korea Institute of Energy Research) ;
  • HYUNCHUL JU (Department of Mechanical Engineering, Inha University Graduate School)
  • 김재환 (인하대학교 대학원 기계공학과) ;
  • 이지승 (인하대학교 대학원 기계공학과) ;
  • 강인석 (한국에너지기술연구원 성과확산실) ;
  • 주현철 (인하대학교 대학원 기계공학과)
  • Received : 2024.03.13
  • Accepted : 2024.04.23
  • Published : 2024.04.30

Abstract

This study introduced a direct contact heat exchanger to enhance the efficiency of polymer electrolyte membrane fuel cells (PEMFCs) systems. According to previous research, 28% of the operating costs of fuel cell systems are attributed to heat exchanger devices, prompting the design of a direct contact heat exchanger to address this issue. Optimal configurations were determined through computational fluid dynamics analysis and experimental device fabrication, and the enhanced heat exchange performance of the heat exchanger was experimentally confirmed. Through this, the contribution of the direct contact heat exchanger to the heat management and efficiency enhancement of PEMFC systems was established.

Keywords

Acknowledgement

본 연구는 2023년도 중소벤처기업부의 기술개발사업 지원에 의하여 연구되었음(과제 번호: RS 2023-00222858).

References

  1. S. Abuzant, S. Jemei, D. Hissel, L. Boulon, K. Agbossou, and F. Gustin, "A review of multi-stack PEM fuel cell systems: advantages, challenges and on-going applications in the industrial market", In: 2017 IEEE Vehicle Power and Propulsion Conference; 2017 Dec 11-14; Belfort. Piscataway: IEEE, 2017, pp. 1-6, doi: https://doi.org/10.1109/VPPC.2017.8330971. 
  2. A. Alaswad, A. Omran, J. R. Sodre, T. Wilberforce, G. Pignatelli, M. Dassisti, A. Baroutaji, and A. G. Olabi, "Technical and commercial challenges of proton-exchange membrane (PEM) fuel cells", Energies, Vol. 14, No. 1, 2021, pp. 144, doi:https://doi.org/10.3390/en14010144. 
  3. M. A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E. T. Sayed, and A. Olabi, "Environmental aspects of fuel cells: a review", Science of The Total Environment, Vol. 752, 2021, pp. 141803, doi: https://doi.org/10.1016/j.scitotenv.2020.141803. 
  4. M. Farooque and H. C. Maru, "Fuel cells-the clean and efficient power generators", Proceedings of the IEEE, Vol. 89, No. 12, 2001, pp. 1819-1829, doi: https://doi.org/10.1109/5.975917. 
  5. L. B. Braga, J. L. Silveira, M. E. da Silva, E. B. Machin, D. T. Pedroso, and C. E. Tuna, "Comparative analysis between a PEM fuel cell and an internal combustion engine driving an electricity generator: technical, economical and ecological aspects", Applied Thermal Engineering, Vol. 63, No. 1, 201 4, pp. 354-361, doi: https://doi.org/10.1016/j.applthermaleng.2013.10.053. 
  6. A. B. Stambouli, "Fuel cells: the expectations for an environmental-friendly and sustainable source of energy", Renewable and Sustainable Energy Reviews, Vol. 15, No. 9, 2011, pp. 4507-4520, doi: https://doi.org/10.1016/j.rser.2011.07.100. 
  7. A. Midilli and I. Dincer, "Development of some exergetic parameters for PEM fuel cells for measuring environmental impact and sustainability", International Journal of Hydrogen Energy, Vol. 34, No. 9, 2009, pp 3858-3872, doi: https://doi.org/10.1016/j.ijhydene.2009.02.066. 
  8. A. Baroutaji, A. Arjunan, J. Robinson, T. Wilberforce, M. A. Abdelkareem, and A. G. Olabi, "PEMFC poly-generation systems: developments, merits, and challenges", Sustainability, Vol. 13, No. 21, 2021, pp. 11696, doi: https://doi.org/10.3390/su132111696. 
  9. G. R. Ashari, M. A. Ehyaei, A. Mozafari, F. Atabi, E. Hajidavalloo, and S. Shalbaf, "Exergy, economic, and environmental analysis of a PEM fuel cell power system to meet electrical and thermal energy needs of residential buildings", Journal of Electrochemical Energy Conversion and Storage, Vol. 9, No. 5, 2012, pp. 051001, doi: https://doi.org/10.1115/1.4006049. 
  10. R. Stropnik, M. Sekavcnik, A. M. Ferriz, and M. Mori, "Reducing environmental impacts of the ups system based on PEM fuel cell with circular economy", Energy, Vol. 165, Pt. B, 2018, pp. 824-835, doi: https://doi.org/10.1016/j.energy.2018.09.201. 
  11. T. E. Lipman, J. L. Edwards, and D. M. Kammen, "Fuel cell system economics: comparing the costs of generating pow er with stationary and motor vehicle PEM fuel cell systems", Energy Policy, Vol. 32, No. 1, 2004, pp. 101-125, doi: https://doi.org/10.1016/S0301-4215(02)00286-0. 
  12. S. K. Kamarudin, W. R. W. Daud, A. M. Som, M. S. Takriff, and A. W. Mohammad, "Technical design and economic evaluation of a PEM fuel cell system", Journal of Power Sources, Vol. 157, No. 2, 2006, pp. 641-649, doi: https://doi.org/10.1016/j.jpowsour.2005.10.053. 
  13. B. Mei, P. Barnoon, D. Toghraie, C. H. Su, H. C. Nguyen, and A. Khan, "Energy, exergy, environmental and economic analyzes (4E) and multi-objective optimization of a PEM fuel cell equipped with coolant channels", Renewable and Sustainable Energy Reviews, Vol. 157, 2022, pp. 112021, doi: https://doi.org/10.1016/j.rser.2021.112021. 
  14. J. Wang, H. Wang, and Y. Fan, "Techno-economic challenges of fuel cell commercialization", Engineering, Vol. 4, No. 3, 2018, pp. 352-360, doi: https://doi.org/10.1016/j.eng.2018.05.007. 
  15. Y. Wang, H. Yuan, A. Martinez, P. Hong, H. Xu, and F. R. Bockmiller, "Polymer electrolyte membrane fuel cell and hydrogen station networks for automobiles: status, technology, and perspectives", Advances in Applied Energy, Vol. 2, 2021, pp. 100011, doi: https://doi.org/10.1016/j.adapen.2021.100011. 
  16. Z. Li, Z. Zheng, L. Xu, and X. Lu, "A review of the applications of fuel cells in microgrids: opportunities and challenges", BMC Energy, Vol. 1, 2019, pp. 8, doi: https://doi.org/10.1186/s42500-019-0008-3. 
  17. G. Bristowe and A. Smallbone, "The key techno-economic and manufacturing drivers for reducing the cost of powerto-gas and a hydrogen-enabled energy system", Hydrogen, Vol. 2, No. 3, 2021, pp. 273-300, doi: https://doi.org/10.3390/hydrogen2030015. 
  18. L. F. Villalon-Lopez, V. M. Ambriz-Diaz, C. Rubio-Maya, O. Chavez, and I. Y. Rosas, "Energy, exergy, exergoeconomic analysis, and optimization in a natural gas decompression station with a vortex tube and geothermal preheating", Sustainability, Vol. 16, No. 4, 2024, pp. 1669, doi: https://doi.org/10.3390/su16041669. 
  19. W. A. N. W. Mohamed and M. H. M. Kamil, "Hydrogen preheating through waste heat recovery of an open-cathode PEM fuel cell leading to power output improvement", Energy Conversion and Management, Vol. 124, 2016, pp. 543-5 55, doi: https://doi.org/10.1016/j.enconman.2016.07.046. 
  20. S. S. M. Ajarostaghi, M. Zaboli, B. Kiani, S. Saedodin, N. Karimi, and H. Javadi, "Hydrogen preheating in a PEMFC system employing a heat exchanger equipped with an innovative turbulator", International Journal of Hydrogen Energy, Vol. 47, No. 85, 2022, pp. 36264-36282, doi: https://doi.org/10.1016/j.ijhydene.2022.08.204. 
  21. T. J. Bvumbe, P. Bujlo, I. Tolj, K. Mouton, G. Swart, S. Pasupathi, S. Pasupathi, and B. G. Pollet, "Review on management, mechanisms and modelling of thermal processes in PEMFC", Hydrogen and Fuel Cells, Vol. 1, No. 1, 2016, pp. 1-20, doi: https://doi.org/10.1515/hfc-2016-0001. 
  22. S. Y. Jeong, "An experimental study on the energy efficiency ratio of heat pump for air source", Journal of Korean Hydrogen and New Energy, Vol. 33, No. 6, 2022, pp. 838-844, doi: https://doi.org/10.7316/KHNES.2022.33.6.838. 
  23. S.Y.Jeong, "An experimental study on the performance of cooling tower unit for mechanical draft", Journal of Korean Hydrogen and New Energy, Vol. 32, No. 6, 2021, pp. 642-64 8, doi: https://doi.org/10.7316/KHNES.2021.32.6.642. 
  24. J. Woo, Y. Kim, and S. Yu, "Performance of fuel cell system for medium duty truck by cooling system configuration", Journal of Korean Hydrogen and New Energy, Vol. 32, No. 4, 2021, pp. 236-244, doi: https://doi.org/10.7316/KHNES.2021.32.4.236. 
  25. J. Y. Park, T. Bui, S. Park, D. Lee, Y. Bae, Y. Kim, and S. M. Lee, "Fuel cell-based cogeneration system for greenhouse cooling and heating", Journal of Hydrogen and New Energy, Vol. 34, No. 6, 2023, pp. 667-672, doi: https://doi.org/10.73 16/JHNE.2023.34.6.667. https://doi.org/10.7316/JHNE.2023.34.6.667