DOI QR코드

DOI QR Code

Design and Validation of a Fuel Cell System with a NaBH4 Hydrogen Generation System for Future Defense Unmanned Vehicles

미래 국방 무인 이동체를 위한 NaBH4 수소 발생 시스템 기반 연료전지 시스템 설계 및 검증

  • SEONG MO YUN (Department of Smart Manufacturing Engineering, Changwon National University) ;
  • MIN JAE KIM (Department of Smart Manufacturing Engineering, Changwon National University) ;
  • CHAE MIN HWANG (Department of Mechanical Engineering, Changwon National University) ;
  • TAE HOON LEE (Hydrogen Fuel Cell Technology R&D Department, Korea Automotive Technology Institute) ;
  • SU SANG YU (Defense Development Team 2, Hyundai WIA) ;
  • TAEK HYUN OH (Department of Mechanical Engineering, Changwon National University)
  • 윤성모 (국립창원대학교 스마트제조융합협동과정) ;
  • 김민재 (국립창원대학교 스마트제조융합협동과정) ;
  • 황채민 (국립창원대학교 기계공학부) ;
  • 이태훈 (한국자동차연구원 수소연료전지기술부문) ;
  • 유수상 (현대위아 특수개발2팀) ;
  • 오택현 (국립창원대학교 기계공학부)
  • Received : 2024.03.04
  • Accepted : 2024.04.17
  • Published : 2024.04.30

Abstract

In this study, a fuel cell system for future defense unmanned vehicles was designed and validated. A Co/Al2O3-Ni foam catalyst for NaBH4 hydrolysis was characterized using several analytical methods. A NaBH4 hydrogen generation system with the Co/Al2O3-Ni foam catalyst continuously generated hydrogen at elevated reaction temperatures. The fuel cell system with the NaBH4 hydrogen generation system was designed and tested. The performance of the fuel cell system was comparable to that of the fuel cell system using pure hydrogen. Therefore, the fuel cell system with the NaBH4 hydrogen generation system is a suitable power source for future defense unmanned vehicles owing to its easy refueling and simple system.

Keywords

Acknowledgement

이 논문은 2023-2024년도 국립창원대학교 자율연구과제 연구비 지원으로 수행된 연구 결과입니다.

References

  1. Y. S. Joo, K. N. Jo, J. I. Kim, K. M. Lee, S. G. Han, M. C. Park, J. S. Ryu, J. S. Woo, and M. G. Han, "Design and experiment of coastal autonomous underwater vehicle 'OKPO-600'", Proceedings of the KOSME Conference, 2009, pp. 339-340. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE01210812.
  2. T. Kim and S. Kwon, "Design and development of a fuel cell-powered small unmanned aircraft", International Journal of Hydrogen Energy, Vol. 37, No. 1, 2012, pp. 615-622, doi: https://doi.org/10.1016/j.ijhydene.2011.09.051.
  3. N. Lapena-Rey, J. A. Blanco, E. Ferreyra, J. L. Lemus, S. Pereira, and E. Serrot, "A fuel cell powered unmanned aerial vehicle for low altitude surveillance missions", International Journal of Hydrogen Energy, Vol. 42, No. 10, 2017, pp. 6926-6940, doi: https://doi.org/10.1016/j.ijhydene.2017.01.137.
  4. J. Lee, S. Lee, D. Han, G. Gwak, and H. Ju, "Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions", International Journal of Hydrogen Energy, Vol. 42, No. 3, 2017, pp. 1736-1750, doi: https://doi.org/10.1016/j.ijhydene.2016.09.087.
  5. T. H. Kin, W. Y. Shieh, C. C. Yang, and G. Yu, "Estimating the methanol crossover rate of PEM and the efficiency of DMFC via a current transient analysis", Journal of Power Sources, Vol. 161, No. 2, 2006, pp. 1183-1186, doi: https://doi.org/10.1016/j.jpowsour.2006.06.009.
  6. M. M. Kreevoy and R. W. Jacobson, "The rate of decomposition of NaBH4 in basic aqueous solutions", Ventron Alembic, Vol. 15, No. 2, 1979, pp. 2-3.
  7. Y. Liang, H. B. Dai, L. P. Ma, P. Wang, and H. M. Cheng, "Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst", International Journal of Hydrogen Energy, Vol. 35, No. 7, 2010, pp. 3023-3028, doi: https://doi.org/10.1016/j.ijhydene.2009.07.008.
  8. J. Zhang, Y. Li, L. Yang, F. Zhang, R. Li, and H. Dong, "Ruthenium nanosheets decorated cobalt foam for controllable hydrogen production from sodium borohydride hydrolysis", Catalysis Letters, Vol. 152, 2022, pp. 1386-1391, doi: https://doi.org/10.1007/s10562-021-03730-5.
  9. V. G. Minkina, S. I. Shabunya, V. I. Kalinin, and A. Smirnova, "Hydrogen generation from sodium borohydride solutions for stationary applications", International Journal of Hydrogen Energy, Vol. 41, No. 22, 2016, pp. 9227-9233, doi: https://doi.org/10.1016/j.ijhydene.2016.03.063.
  10. A. Uzundurukan and Y. Devrim, "Hydrogen generation from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: a kinetic study", International Journal of Hydrogen Energy, Vol. 44, No. 33, 2019, pp. 17586-17594, doi: https://doi.org/10.1016/j.ijhydene.2019.04.188.
  11. J. Lee, K. Y. Kong, C. R. Jung, E. Cho, S. P. Yoon, J. Han, T. G. Lee, and S. W. Nam, "A structured Co-B catalyst for hydrogen extraction from NaBH4 solution", Catalysis Today, Vol. 120, No. 3-4, 2007, pp. 305-310, doi: https://doi.org/10.1016/j.cattod.2006.09.019.
  12. S. Fang, Y. Chen, S. Wang, J. Xu, Y. Xia, F. Yang, Y. Wang, J. Lao, C. Xiang, F. Xu, L. Sun, Y. Zou, and H. Pan, "Modified CNTs interfacial anchoring and particle-controlled synthesis of amorphous cobalt-nickel-boron alloy bifunctional materials for NaBH4 hydrolysis and supercapacitor energy storage", Journal of Alloys and Compounds, Vol. 936, 2023, pp. 167990, doi: https://doi.org/10.1016/j.jallcom.2022.167990.
  13. T. H. Oh and S. Kwon, "Effect of bath composition on properties of electroless deposited Co-P/Ni foam catalyst for hydrolysis of sodium borohydride solution", International Journal of Hydrogen Energy, Vol. 37, No. 22, 2012, pp. 17027-17039, doi: https://doi.org/10.1016/j.ijhydene.2012.08.083.
  14. Y. Wei, M. Wang, W. Fu, L. Wei, X. Zhao, X. Zhou, M. Ni, and H. Wang, "Highly active and durable catalyst for hydrogen generation by the NaBH4 hydrolysis reaction: CoWB/NF nanodendrite with an acicular array structure", Journal of Alloys and Compounds, Vol. 836, 2020, pp. 155429, doi: https://doi.org/10.1016/j.jallcom.2020.155429.
  15. X. Luo, L. Sun, F. Xu, Z. Cao, J. Zeng, Y. Bu, C. Zhang, Y. Xia, Y. Zou, K. Zhang, and H. Pan, "Metal boride-decorated CoNi layered double hydroxides supported on muti-walled carbon nanotubes as efficient hydrolysis catalysts for sodium borohydride", Journal of Alloys and Compounds, Vol. 930, 2023, pp. 167339, doi: https://doi.org/10.1016/j.jallcom.2022.167339.
  16. S. M. Yun, T. H. Lee, and T. H. Oh, "A study on characteristics of NaBH4 hydrolysis using Co/Al2O3 nanopowder catalyst", Journal of Hydrogen and New Energy, Vol. 33, No. 4, 2022, pp. 343-352, doi: https://doi.org/10.7316/KHNES.2022.33.4.343.
  17. H. R. Lee, D. H. Park, W. Ju, I. C. Na, and K. P. Park, "Characteristics of byproduct after NaBH4 hydrolysis reaction using unsupported catalyst", Korean Chemical Engineering Research, Vol. 55, No. 1, 2017, pp. 13-18, doi: https://doi.org/10.9713/kcer.2017.55.1.13.
  18. H. Li, B. Li, Y. Zou, C. Xiang, H. Zhang, F. Xu, L. Sun, and K. He, "Modulating valence band to enhance the catalytic activity of Co-Cr-B/NG for hydrolysis of sodium borohydride", Journal of Alloys and Compounds, Vol. 924, 2022, pp. 166556, doi: https://doi.org/10.1016/j.jallcom.2022.166556.
  19. Y. Liang, P. Wang, and H. B. Dai, "Hydrogen bubbles dynamic template preparation of a porous Fe-Co-B/Ni foam catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution", Journal of Alloys and Compounds, Vol. 491, No. 1-2, 2010, pp. 359-365, doi: https://doi.org/10.1016/j.jallcom.2009.10.183.
  20. H. Kim, T. H. Oh, and S. Kwon, "Simple catalyst bed sizing of a NaBH4 hydrogen generator with fast startup for small unmanned aerial vehicles", International Journal of Hydrogen Energy, Vol. 41, No. 2, 2016, pp. 1018-1026, doi: https://doi.org/10.1016/j.ijhydene.2015.11.134.
  21. T. H. Oh and S. Kwon, "Performance evaluation of hydrogen generation system using NaBH4 hydrolysis for 200 W fuel cell powered UAV", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 43, No. 4, 2015, pp. 296-303, doi: https://doi.org/10.5139/JKSAS.2015.43.4.296.
  22. D. I. Park, S. U. Kim, D. M. Kim, and T. G. Kim, "Performance evaluation of hydrogen generator for fuel cell unmanned aircraft", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 39, No. 7, 2011, pp. 627-633, doi: https://doi.org/10.5139/JKSAS.2011.39.7.627.
  23. T. Oh and S. Kwon, "Effect of additives for prevention of NaBO2 precipitation on hydrogen generation properties of NaBH4 hydrolysis", Journal of Hydrogen and New Energy, Vol. 24, No. 1, 2013, pp. 1-11, doi: https://doi.org/10.7316/KHNES.2013.24.1.001.
  24. T. H. Oh and S. Kwon, "Performance evaluation of hydrogen generation system with electroless-deposited Co-P/Ni foam catalyst for NaBH4 hydrolysis", International Journal of Hydrogen Energy, Vol. 38, No. 15, 2013, pp. 6425-6435, doi: https://doi.org/10.1016/j.ijhydene.2013.03.068.
  25. D. Park, D. J. Moon, and T. Kim, "Steam-CO2 reforming of methane on Ni/γ-Al2O3-deposited metallic foam catalyst for GTL-FPSO process", Fuel Processing Technology, Vol. 112, 2013, pp. 28-34, doi: https://doi.org/10.1016/j.fuproc.2013.02.016.
  26. M. Huang, F. Li, J. Y. Ji, Y. X. Zhang, X. L. Zhao, and X. Gao, "Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors", Cryst-EngComm, Vol. 16, No. 14, 2014, pp. 2878-2884, doi: https://doi.org/10.1039/C3CE42335B.
  27. H. L. Lee and J. H. Lee, "Development of multi-functional mulch papers and evaluation of their performance (part 3) - defoaming treatment during trial production of mulch papers and their influence on wet end system -", Journal of Korea Technical Association of The Pulp and Paper Industry, Vol. 32, No. 3, 2000, pp. 25-31. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE00295473.