Acknowledgement
The author would like to express her gratitude to Umm Alqura University for supporting this research (ID:4401095348).
References
- Mehrabian, A.; Ferris, S.R. Inference of attitudes from nonverbal communication in two channels. Journal of consulting psychology 1967, 31, 248.
- Quach, K.G.; Le, N.; Duong, C.N.; Jalata, I.; Roy, K.; Luu, K. Non-volume preserving-based fusion to group-level emotion recognition on crowd videos. Pattern Recognition 2022, 128, 108646.
- Veltmeijer, E.A.; Gerritsen, C.; Hindriks, K.V. Automatic emotion recognition for groups: a review. IEEE Transactions on Affective Computing 2021, 14, 89-107. https://doi.org/10.1109/TAFFC.2021.3065726
- Holder, R.P.; Tapamo, J.R. Using facial expression recognition for crowd monitoring. In Proceedings of the Image and Video Technology: 8th Pacific-Rim Symposium, PSIVT 2017, Wuhan, China, November 20-24, 2017, Revised Selected Papers 8. Springer, 2018, pp. 463-476.
- Dildine, T.C.; Atlas, L.Y. The need for diversity in research on facial expressions of pain. Pain 2019, 160, 1901.
- Ghosh, R.; Sinha, D. Human emotion recognition by analyzing facial expressions, heart rate and blogs using deep learning method. Innovations in Systems and Software Engineering 2022, pp. 1-9.
- Rosenberg, E.L.; Ekman, P. What the face reveals: Basic and applied studies of spontaneous expression using the Facial Action Coding System (FACS); Oxford University Press, 2020.
- Li, S.; Deng, W. Deep Facial Expression Recognition: A Survey. IEEE Transactions on Affective Computing 2022, 13, 1195-1215. https://doi.org/10.1109/TAFFC.2020.2981446
- Turan, B.; Algedik Demirayak, P.; Yildirim Demirdogen, E.; Gulsen, M.; Cubukcu, H.C.; Guler, M.; Alarslan, H.; Yilmaz, A.E.; Dursun, O.B. Toward the detection of reduced emotion expression intensity: an autism sibling study. Journal of Clinical and Experimental Neuropsychology 2023, pp. 1-11.
- Dollinger, L.; Laukka, P.; Hogman, L.B.; Banziger, T.; Makower, I.; Fischer, H.; Hau, S. Training emotion recognition accuracy: Results for multimodal expressions and facial micro expressions. Frontiers in Psychology 2021, 12, 708867.
- Rokhsaritalemi, S.; Sadeghi-Niaraki, A.; Choi, S.M. Exploring Emotion Analysis using Artificial Intelligence, Geospatial Information Systems, and Extended Reality for Urban Services. IEEE Access 2023.
- Gjoreski, M.; Kiprijanovska, I.; Stankoski, S.; Mavridou, I.; Broulidakis, M.J.; Gjoreski, H.; Nduka, C. Facial EMG sensing for monitoring affect using a wearable device. Scientific Reports 2022, 12, 16876.
- Engelniederhammer, A.; Papastefanou, G.; Xiang, L. Crowding density in urban environment and its effects on emotional responding of pedestrians: Using wearable device technology with sensors capturing proximity and psychophysiological emotion responses while walking in the street. Journal of Human Behavior in the Social Environment 2019, 29, 630-646. https://doi.org/10.1080/10911359.2019.1579149
- Abbas, A.; Chalup, S.K. Group emotion recognition in the wild by combining deep neural networks for facial expression classification and scene-context analysis. In Proceedings of the Proceedings of the 19th ACM international conference on multimodal interaction, 2017, pp. 561-568.
- Griffiths, S.; Rhodes, G.; Jeffery, L.; Palermo, R.; Neumann, M.F. The average facial expression of a crowd influences impressions of individual expressions. Journal of Experimental Psychology: Human Perception and Performance 2018, 44, 311.
- Bucher, A.; Voss, A. Judging the mood of the crowd: Attention is focused on happy faces. Emotion 2019, 19, 1044.
- Halamova, J.; Strnadelova, B.; Kanovsky, M.; Moro, R.; Bielikova, M. Anger or happiness ' superiority effect: A face in the crowd study involving nine emotions expressed by nine people. Current Psychology 2023, 42, 15381-15387.
- Tersek, M.; Kljun, M.; Peer, P.; Emersic, Z. Reevaluation of the CNN-based state-of-the-art crowdcounting methods with enhancements. Computer Science and Information Systems 2022, 19, 1177-1198.
- Shami, M.B.; Maqbool, S.; Sajid, H.; Ayaz, Y.; Cheung, S.C.S. People counting in dense crowd images using sparse head detections. IEEE Transactions on Circuits and Systems for Video Technology 2018, 29, 2627-2636. https://doi.org/10.1109/TCSVT.2018.2803115
- Fu, M.; Xu, P.; Li, X.; Liu, Q.; Ye, M.; Zhu, C. Fast crowd density estimation with convolutional neural networks. Engineering Applications of Artificial Intelligence 2015, 43, 81-88.
- Still, G.K. Applied crowd science; CRC Press, 2021.
- Fan, Z.; Zhang, H.; Zhang, Z.; Lu, G.; Zhang, Y.; Wang, Y. A survey of crowd counting and density estimation based on convolutional neural network. Neurocomputing 2022, 472, 224-251. https://doi.org/10.1016/j.neucom.2021.02.103
- Deng, J.; Guo, J.; Ververas, E.; Kotsia, I.; Zafeiriou, S. Retinaface: Single-shot multi-level face localisation in the wild. In Proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 5203-5212.
- International journal of computer vision 2023.
- Akhand, M.; Roy, S.; Siddique, N.; Kamal, M.A.S.; Shimamura, T. Facial emotion recognition using transfer learning in the deep CNN. Electronics 2021, 10, 1036.
- Rescigno, M.; Spezialetti, M.; Rossi, S. Personalized models for facial emotion recognition through transfer learning. Multimedia Tools and Applications 2020, 79, 35811-35828. https://doi.org/10.1007/s11042-020-09405-4
- Kong, Y.S.; Suresh, V.; Soh, J.; Ong, D.C. A systematic evaluation of domain adaptation in facial expression recognition. arXiv preprint arXiv:2106.15453 2023. 2106.15453
- Atanassov, A.; Pilev, D. Pre-trained Deep Learning Models for Facial Emotions Recognition. In Proceedings of the 2020 International Conference Automatics and Informatics (ICAI). IEEE, 2020, pp. 6.
- Li, S.; Deng, W. A deeper look at facial expression dataset bias. IEEE Transactions on Affective Computing 2020, 13, 881-893.
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. International journal of computer vision 2015, 115, 211-252.
- Summa, M. Are emotions "recollected in tranquility"? Phenomenological reflections on emotions, memory, and the temporal dynamics of experience. In Feeling and value, willing and action: Essays in the context of a phenomenological psychology; Springer, 2014; pp. 163-181.
- Reicher, S. The psychology of crowd dynamics. Blackwell handbook of social psychology: Group processes 2001, pp. 182-208.
- Qureshi, A. W., Monk, R. L., Quinn, S., Gannon, B., McNally, K., & Heim, D. Catching a smile from individuals and crowds: Evidence for distinct emotional contagion processes. Journal of Personality and Social Psychology 2023. Advance online publication. https://doi.org/10.1037/pspi0000445
- Halamova, J., Strnadelova, B., Kanovsky, M., Moro, R. and Bielikova, M. Anger or happiness superiority effect: A face in the crowd study involving nine emotions expressed by nine people. Current Psychology 2023, 42(18), pp.15381-15387. https://doi.org/10.1007/s12144-022-02762-3
- Siddiqui MF, Javaid AY. A multimodal facial emotion recognition framework through the fusion of speech with visible and infrared images. Multimodal Technologies and Interaction 2020, 4(3):46.
- Ezzameli K, Mahersia H. Emotion recognition from unimodal to multimodal analysis: A review. Information Fusion 2023, 101847.