DOI QR코드

DOI QR Code

The contribution of the nervous system in the cancer progression

  • Hongryeol Park (Department of Tissue Morphogenesis, Max-Planck Institute for Molecular Biomedicine) ;
  • Chan Hee Lee (Department of Biomedical Science, Hallym University)
  • Received : 2023.12.23
  • Accepted : 2024.03.19
  • Published : 2024.04.30

Abstract

Cancer progression is driven by genetic mutations, environmental factors, and intricate interactions within the tumor microenvironment (TME). The TME comprises of diverse cell types, such as cancer cells, immune cells, stromal cells, and neuronal cells. These cells mutually influence each other through various factors, including cytokines, vascular perfusion, and matrix stiffness. In the initial or developmental stage of cancer, neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor are associated with poor prognosis of various cancers by communicating with cancer cells, immune cells, and peripheral nerves within the TME. Over the past decade, research has been conducted to prevent cancer growth by controlling the activation of neurotrophic factors within tumors, exhibiting a novel attemt in cancer treatment with promising results. More recently, research focusing on controlling cancer growth through regulation of the autonomic nervous system, including the sympathetic and parasympathetic nervous systems, has gained significant attention. Sympathetic signaling predominantly promotes tumor progression, while the role of parasympathetic signaling varies among different cancer types. Neurotransmitters released from these signalings can directly or indirectly affect tumor cells or immune cells within the TME. Additionally, sensory nerve significantly promotes cancer progression. In the advanced stage of cancer, cancer-associated cachexia occurs, characterized by tissue wasting and reduced quality of life. This process involves the pathways via brainstem growth and differentiation factor 15-glial cell line-derived neurotrophic factor receptor alpha-like signaling and hypothalamic proopiomelanocortin neurons. Our review highlights the critical role of neurotrophic factors as well as central nervous system on the progression of cancer, offering promising avenues for targeted therapeutic strategies.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant (2022R1C1C1004187 and RS-2023-00223501; Bio&Medical Technology Development Program) funded by the Korea government (MSIT). We would also like to thank Editage (www.editage.co.kr) for English language editing.

References

  1. Quail DF and Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19, 1423-1437
  2. Hanahan D and Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309-322 https://doi.org/10.1016/j.ccr.2012.02.022
  3. Huang EJ and Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24, 677-736 https://doi.org/10.1146/annurev.neuro.24.1.677
  4. Aloe L, Rocco ML, Balzamino BO and Micera A (2016) Nerve growth factor: role in growth, differentiation and controlling cancer cell development. J Exp Clin Cancer Res 35, 116
  5. Bruno F, Arcuri D, Vozzo F, Malvaso A, Montesanto A and Maletta R (2022) Expression and signaling pathways of nerve growth factor (NGF) and pro-NGF in breast cancer: a systematic review. Curr Oncol 29, 8103-8120 https://doi.org/10.3390/curroncol29110640
  6. Wu R, Li K, Yuan M and Luo KQ (2021) Nerve growth factor receptor increases the tumor growth and metastatic potential of triple-negative breast cancer cells. Oncogene 40, 2165-2181 https://doi.org/10.1038/s41388-021-01691-y
  7. Nakagawara A, Azar CG, Scavarda NJ and Brodeur GM (1994) Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14, 759-767
  8. Roesler R, de Farias CB, Abujamra AL, Brunetto AL and Schwartsmann G (2011) BDNF/TrkB signaling as an antiumor target. Expert Rev Anticancer Ther 11, 1473-1475 https://doi.org/10.1586/era.11.150
  9. Thiele CJ, Li Z and McKee AE (2009) On Trk--the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res 15, 5962-5967 https://doi.org/10.1158/1078-0432.CCR-08-0651
  10. Radin DP and Patel P (2017) BDNF: an oncogene or tumor suppressor? Anticancer Res 37, 3983-3990
  11. Meng L, Liu B, Ji R, Jiang X, Yan X and Xin Y (2019) Targeting the BDNF/TrkB pathway for the treatment of tumors. Oncol Lett 17, 2031-2039
  12. Wiesenhofer B, Stockhammer G, Kostron H, Maier H, Hinterhuber H and Humpel C (2000) Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GFRalpha 1) are strongly expressed in human gliomas. Acta Neuropathol 99, 131-137 https://doi.org/10.1007/PL00007416
  13. Cao H, He Q, Eyben RV et al (2020) The role of Glial cell derived neurotrophic factor in head and neck cancer. PLoS One 15, e0229311
  14. Zeng J, Zhang Y, Shang Y et al (2022) CancerSCEM: a database of single-cell expression map across various human cancers. Nucleic Acids Res 50, D1147-D1155 https://doi.org/10.1093/nar/gkab905
  15. Bruno F, Abondio P, Montesanto A, Luiselli D, Bruni AC and Maletta R (2023) The nerve growth factor receptor (NGFR/p75(NTR)): a major player in alzheimer's disease. Int J Mol Sci 24, 3200
  16. Peng T, Guo Y, Gan Z et al (2022) Nerve growth factor (NGF) encourages the neuroinvasive potential of pancreatic cancer cells by activating the warburg effect and promoting tumor derived exosomal miRNA-21 expression. Oxid Med Cell Longev 2022, 8445093
  17. Campos X, Munoz Y, Selman A et al (2007) Nerve growth factor and its high-affinity receptor trkA participate in the control of vascular endothelial growth factor expression in epithelial ovarian cancer. Gynecol Oncol 104, 168-175 https://doi.org/10.1016/j.ygyno.2006.07.007
  18. Tapia V, Gabler F, Munoz M et al (2011) Tyrosine kinase A receptor (trkA): a potential marker in epithelial ovarian cancer. Gynecol Oncol 121, 13-23 https://doi.org/10.1016/j.ygyno.2010.12.341
  19. Pundavela J, Roselli S, Faulkner S et al (2015) Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol Oncol 9, 1626-1635 https://doi.org/10.1016/j.molonc.2015.05.001
  20. Dolle L, El Yazidi-Belkoura I, Adriaenssens E, Nurcombe V and Hondermarck H (2003) Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene 22, 5592-5601 https://doi.org/10.1038/sj.onc.1206805
  21. Lei Y, Tang L, Xie Y et al (2017) Gold nanoclustersassisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat Commun 8, 15130
  22. Patani N, Jiang WG and Mokbel K (2011) Brain-derived neurotrophic factor expression predicts adverse pathological & clinical outcomes in human breast cancer. Cancer Cell Int 11, 23
  23. Wojtowicz K, Czarzasta K, Przepiorka L et al (2023) Brain-derived neurotrophic factor (bdnf) concentration levels in cerebrospinal fluid and plasma in patients with glioblastoma: a prospective, observational, controlled study. Cureus 15, e48237
  24. Tian GA, Xu WT, Sun Y et al (2021) BDNF expression in GISTs predicts poor prognosis when associated with PD-L1 positive tumor-infiltrating lymphocytes. Oncoimmunology 10, 2003956
  25. Allen JK, Armaiz-Pena GN, Nagaraja AS et al (2018) Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res 78, 3233-3242
  26. Lange AM and Lo HW (2018) Inhibiting TRK Proteins in Clinical Cancer Therapy. Cancers (Basel) 10, 105
  27. Lin LF, Doherty DH, Lile JD, Bektesh S and Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130-1132 https://doi.org/10.1126/science.8493557
  28. Ceyhan GO, Demir IE, Altintas B et al (2008) Neural invasion in pancreatic cancer: a mutual tropism between neurons and cancer cells. Biochem Biophys Res Commun 374, 442-447 https://doi.org/10.1016/j.bbrc.2008.07.035
  29. Cavel O, Shomron O, Shabtay A et al (2012) Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Cancer Res 72, 5733-5743
  30. Song H and Moon A (2006) Glial cell-derived neurotrophic factor (GDNF) promotes low-grade Hs683 glioma cell migration through JNK, ERK-1/2 and p38 MAPK signaling pathways. Neurosci Res 56, 29-38 https://doi.org/10.1016/j.neures.2006.04.019
  31. Lu DY, Leung YM, Cheung CW, Chen YR and Wong KL (2010) Glial cell line-derived neurotrophic factor induces cell migration and matrix metalloproteinase-13 expression in glioma cells. Biochem Pharmacol 80, 1201-1209 https://doi.org/10.1016/j.bcp.2010.06.046
  32. Ban K, Feng S, Shao L and Ittmann M (2017) RET signaling in prostate cancer. Clin Cancer Res 23, 4885-4896 https://doi.org/10.1158/1078-0432.CCR-17-0528
  33. Baspinar S, Bircan S, Ciris M, Karahan N and Bozkurt KK (2017) Expression of NGF, GDNF and MMP-9 in prostate carcinoma. Pathol Res Pract 213, 483-489 https://doi.org/10.1016/j.prp.2017.02.007
  34. Basu AK (2018) DNA damage, mutagenesis and cancer. Int J Mol Sci 19, 970
  35. Huber RM, Lucas JM, Gomez-Sarosi LA et al (2015) DNA damage induces GDNF secretion in the tumor microenvironment with paracrine effects promoting prostate cancer treatment resistance. Oncotarget 6, 2134-2147 https://doi.org/10.18632/oncotarget.3040
  36. Liu D, Flory J, Lin A et al (2020) Characterization of ontarget adverse events caused by TRK inhibitor therapy. Ann Oncol 31, 1207-1215 https://doi.org/10.1016/j.annonc.2020.05.006
  37. Frisbie JH and Binard J (1994) Low prevalence of prostatic cancer among myelopathy patients. J Am Paraplegia Soc 17, 148-149 https://doi.org/10.1080/01952307.1994.11735926
  38. Rutledge A, Jobling P, Walker MM, Denham JW and Hondermarck H (2017) Spinal cord injuries and nerve dependence in prostate cancer. Trends in Cancer 3, 812-815 https://doi.org/10.1016/j.trecan.2017.10.001
  39. Gholizadeh N, Greer PB, Simpson J et al (2019) Characterization of prostate cancer using diffusion tensor imaging: a new perspective. Eur J Radiol 110, 112-120 https://doi.org/10.1016/j.ejrad.2018.11.026
  40. Grytli HH, Fagerland MW, Fossa SD and Tasken KA (2014) Association between use of β-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Urol 65, 635-641 https://doi.org/10.1016/j.eururo.2013.01.007
  41. Waxenbaum JA, Reddy V and Varacallo M (2023) Anatomy, autonomic nervous system; in StatPearls, StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC., Treasure Island (FL)
  42. LeBouef T, Yaker Z and Whited L (2023) Physiology, autonomic nervous system; in StatPearls, StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC., Treasure Island (FL)
  43. Magnon C, Hall SJ, Lin J et al (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361
  44. Renz BW, Takahashi R, Tanaka T et al (2018) β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 33, 75-90 e77
  45. Barron TI, Connolly RM, Sharp L, Bennett K and Visvanathan K (2011) Beta blockers and breast cancer mortality: a population- based study. J Clin Oncol 29, 2635- 2644 https://doi.org/10.1200/JCO.2010.33.5422
  46. Melhem-Bertrandt A, Chavez-Macgregor M, Lei X et al (2011) Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol 29, 2645-2652 https://doi.org/10.1200/JCO.2010.33.4441
  47. Watkins JL, Thaker PH, Nick AM et al (2015) Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer 121, 3444-3451 https://doi.org/10.1002/cncr.29392
  48. Kamiya A, Hayama Y, Kato S et al (2019) Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat Neurosci 22, 1289-1305
  49. Renz BW, Tanaka T, Sunagawa M et al (2018) Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov 8, 1458-1473 https://doi.org/10.1158/2159-8290.CD-18-0046
  50. Zhao CM, Hayakawa Y, Kodama Y et al (2014) Denervation suppresses gastric tumorigenesis. Sci Transl Med 6, 250ra115
  51. Hayakawa Y, Sakitani K, Konishi M et al (2017) Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31, 21-34 https://doi.org/10.1016/j.ccell.2016.11.005
  52. Peterson SC, Eberl M, Vagnozzi AN et al (2015) Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16, 400-412
  53. Epstein EH (2008) Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer 8, 743-754 https://doi.org/10.1038/nrc2503
  54. Xie J, Murone M, Luoh SM et al (1998) Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90-92 https://doi.org/10.1038/34201
  55. Saloman JL, Albers KM, Li D et al (2016) Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci U S A 113, 3078-3083 https://doi.org/10.1073/pnas.1512603113
  56. Restaino AC, Walz A, Vermeer SJ et al (2023) Functional neuronal circuits promote disease progression in cancer. Sci Adv 9, eade4443
  57. Pan S, Yin K, Tang Z et al (2021) Stimulation of hypothalamic oxytocin neurons suppresses colorectal cancer progression in mice. Elife 10, e67535
  58. Xiong SY, Wen HZ, Dai LM et al (2023) A brain-tumor neural circuit controls breast cancer progression in mice. J Clin Invest 133, e167725
  59. Smith GW, Aubry JM, Dellu F et al (1998) Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20, 1093-1102 https://doi.org/10.1016/S0896-6273(00)80491-2
  60. Yan J, Chen Y, Luo M et al (2023) Chronic stress in solid tumor development: from mechanisms to interventions. J Biomed Sci 30, 8
  61. Aggarwal BB, Vijayalekshmi RV and Sung B (2009) Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15, 425-430
  62. Grivennikov SI, Greten FR and Karin M (2010) Immunity, inflammation, and cancer. Cell 140, 883-899 https://doi.org/10.1016/j.cell.2010.01.025
  63. Okusa MD, Rosin DL and Tracey KJ (2017) Targeting neural reflex circuits in immunity to treat kidney disease. Nat Rev Nephrol 13, 669-680 https://doi.org/10.1038/nrneph.2017.132
  64. Mueller SN (2022) Neural control of immune cell trafficking. J Exp Med 219, e20211604
  65. Pavlov VA and Tracey KJ (2017) Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci 20, 156-166 https://doi.org/10.1038/nn.4477
  66. Rosas-Ballina M, Olofsson PS, Ochani M et al (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98-101 https://doi.org/10.1126/science.1209985
  67. Guarini S, Altavilla D, Cainazzo MM et al (2003) Efferent vagal fibre stimulation blunts nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation 107, 1189-1194 https://doi.org/10.1161/01.CIR.0000050627.90734.ED
  68. de Jonge WJ, van der Zanden EP, The FO et al (2005) Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 6, 844-851 https://doi.org/10.1038/ni1229
  69. Wang H, Yu M, Ochani M et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384-388 https://doi.org/10.1038/nature01339
  70. Pavlov VA and Tracey KJ (2012) The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol 8, 743-754 https://doi.org/10.1038/nrendo.2012.189
  71. Yang MW, Tao LY, Jiang YS et al (2020) Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma. Cancer Res 80, 1991-2003
  72. Partecke LI, Kading A, Trung DN et al (2017) Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFα in a murine pancreatic cancer model. Oncotarget 8, 22501-22512 https://doi.org/10.18632/oncotarget.15019
  73. Montfort A, Colacios C, Levade T, Andrieu-Abadie N, Meyer N and Segui B (2019) The TNF paradox in cancer progression and immunotherapy. Front Immunol 10, 1818
  74. Lugano R, Ramachandran M and Dimberg A (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 77, 1745-1770 https://doi.org/10.1007/s00018-019-03351-7
  75. Eichmann A and Thomas JL (2013) Molecular parallels between neural and vascular development. Cold Spring Harb Perspect Med 3, a006551
  76. Romon R, Adriaenssens E, Lagadec C, Germain E, Hondermarck H and Le Bourhis X (2010) Nerve growth factor promotes breast cancer angiogenesis by activating multiple pathways. Mol Cancer 9, 157
  77. Lin CY, Wang SW, Chen YL et al (2017) Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells. Cell Death Dis 8, e2964
  78. Zahalka AH, Arnal-Estape A, Maryanovich M et al (2017) Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321-326 https://doi.org/10.1126/science.aah5072
  79. Le CP, Nowell CJ, Kim-Fuchs C et al (2016) Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun 7, 10634
  80. Park SY, Hwang BO and Song NY (2023) The role of myokines in cancer: crosstalk between skeletal muscle and tumor. BMB Rep 56, 365-373 https://doi.org/10.5483/BMBRep.2023-0064
  81. Jeong SM, Jin EJ, Wei S et al (2023) The impact of cancer cachexia on gut microbiota composition and short-chain fatty acid metabolism in a murine model. BMB Rep 56, 404-409 https://doi.org/10.5483/BMBRep.2023-0068
  82. Fearon K, Strasser F, Anker SD et al (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12, 489-495 https://doi.org/10.1016/S1470-2045(10)70218-7
  83. Deboer MD and Marks DL (2006) Cachexia: lessons from melanocortin antagonism. Trends Endocrinol Metab 17, 199-204 https://doi.org/10.1016/j.tem.2006.05.005
  84. Yang L, Chang CC, Sun Z et al (2017) GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med 23, 1158-1166 https://doi.org/10.1038/nm.4394
  85. Ahmed DS, Isnard S, Lin J, Routy B and Routy JP (2021) GDF15/GFRAL pathway as a metabolic signature for cachexia in patients with cancer. J Cancer 12, 1125-1132 https://doi.org/10.7150/jca.50376
  86. Lerner L, Hayes TG, Tao N et al (2015) Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients. J Cachexia Sarcopenia Muscle 6, 317-324 https://doi.org/10.1002/jcsm.12033
  87. Staff AC, Bock AJ, Becker C, Kempf T, Wollert KC and Davidson B (2010) Growth differentiation factor-15 as a prognostic biomarker in ovarian cancer. Gynecol Oncol 118, 237-243 https://doi.org/10.1016/j.ygyno.2010.05.032
  88. Li C, Wang X, Casal I et al (2016) Growth differentiation factor 15 is a promising diagnostic and prognostic biomarker in colorectal cancer. J Cell Mol Med 20, 1420-1426 https://doi.org/10.1111/jcmm.12830
  89. Tsai VWW, Husaini Y, Sainsbury A, Brown DA and Breit SN (2018) The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases. Cell Metab 28, 353-368 https://doi.org/10.1016/j.cmet.2018.07.018
  90. Lerner L, Tao J, Liu Q et al (2016) MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J Cachexia Sarcopenia Muscle 7, 467-482 https://doi.org/10.1002/jcsm.12077
  91. Wischhusen J, Melero I and Fridman WH (2020) Growth/differentiation factor-15 (GDF-15): from biomarker to novel targetable immune checkpoint. Front Immunol 11, 951
  92. Tsai VW, Macia L, Johnen H et al (2013) TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator. PLoS One 8, e55174
  93. Hsu JY, Crawley S, Chen M et al (2017) Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550, 255-259 https://doi.org/10.1038/nature24042
  94. Wang D, Townsend LK, DesOrmeaux GJ et al (2023) GDF15 promotes weight loss by enhancing energy expenditure in muscle. Nature 619, 143-150
  95. Sjoberg KA, Sigvardsen CM, Alvarado-Diaz A et al (2023) GDF15 increases insulin action in the liver and adipose tissue via a β-adrenergic receptor-mediated mechanism. Cell Metab 35, 1327-1340 e1325
  96. Suriben R, Chen M, Higbee J et al (2020) Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice. Nat Med 26, 1264-1270 https://doi.org/10.1038/s41591-020-0945-x
  97. Kim-Muller JY, Song L, LaCarubba Paulhus B et al (2023) GDF15 neutralization restores muscle function and physical performance in a mouse model of cancer cachexia. Cell Rep 42, 111947
  98. Kang GM, Min SH, Lee CH et al (2021) Mitohormesis in hypothalamic POMC neurons mediates regular exercise-induced high-turnover metabolism. Cell Metab 33, 334-349 e336
  99. Plum L, Ma X, Hampel B et al (2006) Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J Clin Invest 116, 1886-1901 https://doi.org/10.1172/JCI27123
  100. Xu W, Li J, Ji C et al (2023) Activation of POMC neurons to adiponectin participating in EA-mediated improvement of high-fat diet IR mice. Front Neurosci 17, 1145079
  101. McMinn JE, Wilkinson CW, Havel PJ, Woods SC and Schwartz MW (2000) Effect of intracerebroventricular alpha-MSH on food intake, adiposity, c-Fos induction, and neuropeptide expression. Am J Physiol Regul Integr Comp Physiol 279, R695-R703 https://doi.org/10.1152/ajpregu.2000.279.2.R695
  102. Zhu X, Callahan MF, Gruber KA, Szumowski M and Marks DL (2020) Melanocortin-4 receptor antagonist TCMCB07 ameliorates cancer- and chronic kidney disease-associated cachexia. J Clin Invest 130, 4921-4934 https://doi.org/10.1172/JCI138392
  103. Vos TJ, Caracoti A, Che JL et al (2004) Identification of 2-[2-[2-(5-bromo-2- methoxyphenyl)-ethyl]-3-fluorophenyl]-4,5-dihydro-1H-imidazole (ML00253764), a small molecule melanocortin 4 receptor antagonist that effectively reduces tumor-induced weight loss in a mouse model. J Med Chem 47, 1602-1604 https://doi.org/10.1021/jm034244g
  104. Wisse BE, Frayo RS, Schwartz MW and Cummings DE (2001) Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology 142, 3292-3301 https://doi.org/10.1210/endo.142.8.8324
  105. Marks DL, Ling N and Cone RD (2001) Role of the central melanocortin system in cachexia. Cancer Res 61, 1432-1438
  106. Duan J, Cheng M, Xu Y et al (2022) Exogenous melatonin alleviates skeletal muscle wasting by regulating hypothalamic neuropeptides expression in endotoxemia rats. Neurochem Res 47, 885-896 https://doi.org/10.1007/s11064-021-03489-6
  107. Duan K, Chen Q, Cheng M et al (2016) Hypothalamic activation is essential for endotoxemia-induced acute muscle wasting. Sci Rep 6, 38544