Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant (2022R1C1C1004187 and RS-2023-00223501; Bio&Medical Technology Development Program) funded by the Korea government (MSIT). We would also like to thank Editage (www.editage.co.kr) for English language editing.
References
- Quail DF and Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19, 1423-1437
- Hanahan D and Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309-322 https://doi.org/10.1016/j.ccr.2012.02.022
- Huang EJ and Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24, 677-736 https://doi.org/10.1146/annurev.neuro.24.1.677
- Aloe L, Rocco ML, Balzamino BO and Micera A (2016) Nerve growth factor: role in growth, differentiation and controlling cancer cell development. J Exp Clin Cancer Res 35, 116
- Bruno F, Arcuri D, Vozzo F, Malvaso A, Montesanto A and Maletta R (2022) Expression and signaling pathways of nerve growth factor (NGF) and pro-NGF in breast cancer: a systematic review. Curr Oncol 29, 8103-8120 https://doi.org/10.3390/curroncol29110640
- Wu R, Li K, Yuan M and Luo KQ (2021) Nerve growth factor receptor increases the tumor growth and metastatic potential of triple-negative breast cancer cells. Oncogene 40, 2165-2181 https://doi.org/10.1038/s41388-021-01691-y
- Nakagawara A, Azar CG, Scavarda NJ and Brodeur GM (1994) Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14, 759-767
- Roesler R, de Farias CB, Abujamra AL, Brunetto AL and Schwartsmann G (2011) BDNF/TrkB signaling as an antiumor target. Expert Rev Anticancer Ther 11, 1473-1475 https://doi.org/10.1586/era.11.150
- Thiele CJ, Li Z and McKee AE (2009) On Trk--the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res 15, 5962-5967 https://doi.org/10.1158/1078-0432.CCR-08-0651
- Radin DP and Patel P (2017) BDNF: an oncogene or tumor suppressor? Anticancer Res 37, 3983-3990
- Meng L, Liu B, Ji R, Jiang X, Yan X and Xin Y (2019) Targeting the BDNF/TrkB pathway for the treatment of tumors. Oncol Lett 17, 2031-2039
- Wiesenhofer B, Stockhammer G, Kostron H, Maier H, Hinterhuber H and Humpel C (2000) Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GFRalpha 1) are strongly expressed in human gliomas. Acta Neuropathol 99, 131-137 https://doi.org/10.1007/PL00007416
- Cao H, He Q, Eyben RV et al (2020) The role of Glial cell derived neurotrophic factor in head and neck cancer. PLoS One 15, e0229311
- Zeng J, Zhang Y, Shang Y et al (2022) CancerSCEM: a database of single-cell expression map across various human cancers. Nucleic Acids Res 50, D1147-D1155 https://doi.org/10.1093/nar/gkab905
- Bruno F, Abondio P, Montesanto A, Luiselli D, Bruni AC and Maletta R (2023) The nerve growth factor receptor (NGFR/p75(NTR)): a major player in alzheimer's disease. Int J Mol Sci 24, 3200
- Peng T, Guo Y, Gan Z et al (2022) Nerve growth factor (NGF) encourages the neuroinvasive potential of pancreatic cancer cells by activating the warburg effect and promoting tumor derived exosomal miRNA-21 expression. Oxid Med Cell Longev 2022, 8445093
- Campos X, Munoz Y, Selman A et al (2007) Nerve growth factor and its high-affinity receptor trkA participate in the control of vascular endothelial growth factor expression in epithelial ovarian cancer. Gynecol Oncol 104, 168-175 https://doi.org/10.1016/j.ygyno.2006.07.007
- Tapia V, Gabler F, Munoz M et al (2011) Tyrosine kinase A receptor (trkA): a potential marker in epithelial ovarian cancer. Gynecol Oncol 121, 13-23 https://doi.org/10.1016/j.ygyno.2010.12.341
- Pundavela J, Roselli S, Faulkner S et al (2015) Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol Oncol 9, 1626-1635 https://doi.org/10.1016/j.molonc.2015.05.001
- Dolle L, El Yazidi-Belkoura I, Adriaenssens E, Nurcombe V and Hondermarck H (2003) Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene 22, 5592-5601 https://doi.org/10.1038/sj.onc.1206805
- Lei Y, Tang L, Xie Y et al (2017) Gold nanoclustersassisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat Commun 8, 15130
- Patani N, Jiang WG and Mokbel K (2011) Brain-derived neurotrophic factor expression predicts adverse pathological & clinical outcomes in human breast cancer. Cancer Cell Int 11, 23
- Wojtowicz K, Czarzasta K, Przepiorka L et al (2023) Brain-derived neurotrophic factor (bdnf) concentration levels in cerebrospinal fluid and plasma in patients with glioblastoma: a prospective, observational, controlled study. Cureus 15, e48237
- Tian GA, Xu WT, Sun Y et al (2021) BDNF expression in GISTs predicts poor prognosis when associated with PD-L1 positive tumor-infiltrating lymphocytes. Oncoimmunology 10, 2003956
- Allen JK, Armaiz-Pena GN, Nagaraja AS et al (2018) Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res 78, 3233-3242
- Lange AM and Lo HW (2018) Inhibiting TRK Proteins in Clinical Cancer Therapy. Cancers (Basel) 10, 105
- Lin LF, Doherty DH, Lile JD, Bektesh S and Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130-1132 https://doi.org/10.1126/science.8493557
- Ceyhan GO, Demir IE, Altintas B et al (2008) Neural invasion in pancreatic cancer: a mutual tropism between neurons and cancer cells. Biochem Biophys Res Commun 374, 442-447 https://doi.org/10.1016/j.bbrc.2008.07.035
- Cavel O, Shomron O, Shabtay A et al (2012) Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Cancer Res 72, 5733-5743
- Song H and Moon A (2006) Glial cell-derived neurotrophic factor (GDNF) promotes low-grade Hs683 glioma cell migration through JNK, ERK-1/2 and p38 MAPK signaling pathways. Neurosci Res 56, 29-38 https://doi.org/10.1016/j.neures.2006.04.019
- Lu DY, Leung YM, Cheung CW, Chen YR and Wong KL (2010) Glial cell line-derived neurotrophic factor induces cell migration and matrix metalloproteinase-13 expression in glioma cells. Biochem Pharmacol 80, 1201-1209 https://doi.org/10.1016/j.bcp.2010.06.046
- Ban K, Feng S, Shao L and Ittmann M (2017) RET signaling in prostate cancer. Clin Cancer Res 23, 4885-4896 https://doi.org/10.1158/1078-0432.CCR-17-0528
- Baspinar S, Bircan S, Ciris M, Karahan N and Bozkurt KK (2017) Expression of NGF, GDNF and MMP-9 in prostate carcinoma. Pathol Res Pract 213, 483-489 https://doi.org/10.1016/j.prp.2017.02.007
- Basu AK (2018) DNA damage, mutagenesis and cancer. Int J Mol Sci 19, 970
- Huber RM, Lucas JM, Gomez-Sarosi LA et al (2015) DNA damage induces GDNF secretion in the tumor microenvironment with paracrine effects promoting prostate cancer treatment resistance. Oncotarget 6, 2134-2147 https://doi.org/10.18632/oncotarget.3040
- Liu D, Flory J, Lin A et al (2020) Characterization of ontarget adverse events caused by TRK inhibitor therapy. Ann Oncol 31, 1207-1215 https://doi.org/10.1016/j.annonc.2020.05.006
- Frisbie JH and Binard J (1994) Low prevalence of prostatic cancer among myelopathy patients. J Am Paraplegia Soc 17, 148-149 https://doi.org/10.1080/01952307.1994.11735926
- Rutledge A, Jobling P, Walker MM, Denham JW and Hondermarck H (2017) Spinal cord injuries and nerve dependence in prostate cancer. Trends in Cancer 3, 812-815 https://doi.org/10.1016/j.trecan.2017.10.001
- Gholizadeh N, Greer PB, Simpson J et al (2019) Characterization of prostate cancer using diffusion tensor imaging: a new perspective. Eur J Radiol 110, 112-120 https://doi.org/10.1016/j.ejrad.2018.11.026
- Grytli HH, Fagerland MW, Fossa SD and Tasken KA (2014) Association between use of β-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Urol 65, 635-641 https://doi.org/10.1016/j.eururo.2013.01.007
- Waxenbaum JA, Reddy V and Varacallo M (2023) Anatomy, autonomic nervous system; in StatPearls, StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC., Treasure Island (FL)
- LeBouef T, Yaker Z and Whited L (2023) Physiology, autonomic nervous system; in StatPearls, StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC., Treasure Island (FL)
- Magnon C, Hall SJ, Lin J et al (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361
- Renz BW, Takahashi R, Tanaka T et al (2018) β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 33, 75-90 e77
- Barron TI, Connolly RM, Sharp L, Bennett K and Visvanathan K (2011) Beta blockers and breast cancer mortality: a population- based study. J Clin Oncol 29, 2635- 2644 https://doi.org/10.1200/JCO.2010.33.5422
- Melhem-Bertrandt A, Chavez-Macgregor M, Lei X et al (2011) Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol 29, 2645-2652 https://doi.org/10.1200/JCO.2010.33.4441
- Watkins JL, Thaker PH, Nick AM et al (2015) Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer 121, 3444-3451 https://doi.org/10.1002/cncr.29392
- Kamiya A, Hayama Y, Kato S et al (2019) Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat Neurosci 22, 1289-1305
- Renz BW, Tanaka T, Sunagawa M et al (2018) Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov 8, 1458-1473 https://doi.org/10.1158/2159-8290.CD-18-0046
- Zhao CM, Hayakawa Y, Kodama Y et al (2014) Denervation suppresses gastric tumorigenesis. Sci Transl Med 6, 250ra115
- Hayakawa Y, Sakitani K, Konishi M et al (2017) Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31, 21-34 https://doi.org/10.1016/j.ccell.2016.11.005
- Peterson SC, Eberl M, Vagnozzi AN et al (2015) Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16, 400-412
- Epstein EH (2008) Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer 8, 743-754 https://doi.org/10.1038/nrc2503
- Xie J, Murone M, Luoh SM et al (1998) Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90-92 https://doi.org/10.1038/34201
- Saloman JL, Albers KM, Li D et al (2016) Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci U S A 113, 3078-3083 https://doi.org/10.1073/pnas.1512603113
- Restaino AC, Walz A, Vermeer SJ et al (2023) Functional neuronal circuits promote disease progression in cancer. Sci Adv 9, eade4443
- Pan S, Yin K, Tang Z et al (2021) Stimulation of hypothalamic oxytocin neurons suppresses colorectal cancer progression in mice. Elife 10, e67535
- Xiong SY, Wen HZ, Dai LM et al (2023) A brain-tumor neural circuit controls breast cancer progression in mice. J Clin Invest 133, e167725
- Smith GW, Aubry JM, Dellu F et al (1998) Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20, 1093-1102 https://doi.org/10.1016/S0896-6273(00)80491-2
- Yan J, Chen Y, Luo M et al (2023) Chronic stress in solid tumor development: from mechanisms to interventions. J Biomed Sci 30, 8
- Aggarwal BB, Vijayalekshmi RV and Sung B (2009) Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15, 425-430
- Grivennikov SI, Greten FR and Karin M (2010) Immunity, inflammation, and cancer. Cell 140, 883-899 https://doi.org/10.1016/j.cell.2010.01.025
- Okusa MD, Rosin DL and Tracey KJ (2017) Targeting neural reflex circuits in immunity to treat kidney disease. Nat Rev Nephrol 13, 669-680 https://doi.org/10.1038/nrneph.2017.132
- Mueller SN (2022) Neural control of immune cell trafficking. J Exp Med 219, e20211604
- Pavlov VA and Tracey KJ (2017) Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci 20, 156-166 https://doi.org/10.1038/nn.4477
- Rosas-Ballina M, Olofsson PS, Ochani M et al (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98-101 https://doi.org/10.1126/science.1209985
- Guarini S, Altavilla D, Cainazzo MM et al (2003) Efferent vagal fibre stimulation blunts nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation 107, 1189-1194 https://doi.org/10.1161/01.CIR.0000050627.90734.ED
- de Jonge WJ, van der Zanden EP, The FO et al (2005) Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 6, 844-851 https://doi.org/10.1038/ni1229
- Wang H, Yu M, Ochani M et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384-388 https://doi.org/10.1038/nature01339
- Pavlov VA and Tracey KJ (2012) The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol 8, 743-754 https://doi.org/10.1038/nrendo.2012.189
- Yang MW, Tao LY, Jiang YS et al (2020) Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma. Cancer Res 80, 1991-2003
- Partecke LI, Kading A, Trung DN et al (2017) Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFα in a murine pancreatic cancer model. Oncotarget 8, 22501-22512 https://doi.org/10.18632/oncotarget.15019
- Montfort A, Colacios C, Levade T, Andrieu-Abadie N, Meyer N and Segui B (2019) The TNF paradox in cancer progression and immunotherapy. Front Immunol 10, 1818
- Lugano R, Ramachandran M and Dimberg A (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 77, 1745-1770 https://doi.org/10.1007/s00018-019-03351-7
- Eichmann A and Thomas JL (2013) Molecular parallels between neural and vascular development. Cold Spring Harb Perspect Med 3, a006551
- Romon R, Adriaenssens E, Lagadec C, Germain E, Hondermarck H and Le Bourhis X (2010) Nerve growth factor promotes breast cancer angiogenesis by activating multiple pathways. Mol Cancer 9, 157
- Lin CY, Wang SW, Chen YL et al (2017) Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells. Cell Death Dis 8, e2964
- Zahalka AH, Arnal-Estape A, Maryanovich M et al (2017) Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321-326 https://doi.org/10.1126/science.aah5072
- Le CP, Nowell CJ, Kim-Fuchs C et al (2016) Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun 7, 10634
- Park SY, Hwang BO and Song NY (2023) The role of myokines in cancer: crosstalk between skeletal muscle and tumor. BMB Rep 56, 365-373 https://doi.org/10.5483/BMBRep.2023-0064
- Jeong SM, Jin EJ, Wei S et al (2023) The impact of cancer cachexia on gut microbiota composition and short-chain fatty acid metabolism in a murine model. BMB Rep 56, 404-409 https://doi.org/10.5483/BMBRep.2023-0068
- Fearon K, Strasser F, Anker SD et al (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12, 489-495 https://doi.org/10.1016/S1470-2045(10)70218-7
- Deboer MD and Marks DL (2006) Cachexia: lessons from melanocortin antagonism. Trends Endocrinol Metab 17, 199-204 https://doi.org/10.1016/j.tem.2006.05.005
- Yang L, Chang CC, Sun Z et al (2017) GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med 23, 1158-1166 https://doi.org/10.1038/nm.4394
- Ahmed DS, Isnard S, Lin J, Routy B and Routy JP (2021) GDF15/GFRAL pathway as a metabolic signature for cachexia in patients with cancer. J Cancer 12, 1125-1132 https://doi.org/10.7150/jca.50376
- Lerner L, Hayes TG, Tao N et al (2015) Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients. J Cachexia Sarcopenia Muscle 6, 317-324 https://doi.org/10.1002/jcsm.12033
- Staff AC, Bock AJ, Becker C, Kempf T, Wollert KC and Davidson B (2010) Growth differentiation factor-15 as a prognostic biomarker in ovarian cancer. Gynecol Oncol 118, 237-243 https://doi.org/10.1016/j.ygyno.2010.05.032
- Li C, Wang X, Casal I et al (2016) Growth differentiation factor 15 is a promising diagnostic and prognostic biomarker in colorectal cancer. J Cell Mol Med 20, 1420-1426 https://doi.org/10.1111/jcmm.12830
- Tsai VWW, Husaini Y, Sainsbury A, Brown DA and Breit SN (2018) The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases. Cell Metab 28, 353-368 https://doi.org/10.1016/j.cmet.2018.07.018
- Lerner L, Tao J, Liu Q et al (2016) MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J Cachexia Sarcopenia Muscle 7, 467-482 https://doi.org/10.1002/jcsm.12077
- Wischhusen J, Melero I and Fridman WH (2020) Growth/differentiation factor-15 (GDF-15): from biomarker to novel targetable immune checkpoint. Front Immunol 11, 951
- Tsai VW, Macia L, Johnen H et al (2013) TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator. PLoS One 8, e55174
- Hsu JY, Crawley S, Chen M et al (2017) Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550, 255-259 https://doi.org/10.1038/nature24042
- Wang D, Townsend LK, DesOrmeaux GJ et al (2023) GDF15 promotes weight loss by enhancing energy expenditure in muscle. Nature 619, 143-150
- Sjoberg KA, Sigvardsen CM, Alvarado-Diaz A et al (2023) GDF15 increases insulin action in the liver and adipose tissue via a β-adrenergic receptor-mediated mechanism. Cell Metab 35, 1327-1340 e1325
- Suriben R, Chen M, Higbee J et al (2020) Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice. Nat Med 26, 1264-1270 https://doi.org/10.1038/s41591-020-0945-x
- Kim-Muller JY, Song L, LaCarubba Paulhus B et al (2023) GDF15 neutralization restores muscle function and physical performance in a mouse model of cancer cachexia. Cell Rep 42, 111947
- Kang GM, Min SH, Lee CH et al (2021) Mitohormesis in hypothalamic POMC neurons mediates regular exercise-induced high-turnover metabolism. Cell Metab 33, 334-349 e336
- Plum L, Ma X, Hampel B et al (2006) Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J Clin Invest 116, 1886-1901 https://doi.org/10.1172/JCI27123
- Xu W, Li J, Ji C et al (2023) Activation of POMC neurons to adiponectin participating in EA-mediated improvement of high-fat diet IR mice. Front Neurosci 17, 1145079
- McMinn JE, Wilkinson CW, Havel PJ, Woods SC and Schwartz MW (2000) Effect of intracerebroventricular alpha-MSH on food intake, adiposity, c-Fos induction, and neuropeptide expression. Am J Physiol Regul Integr Comp Physiol 279, R695-R703 https://doi.org/10.1152/ajpregu.2000.279.2.R695
- Zhu X, Callahan MF, Gruber KA, Szumowski M and Marks DL (2020) Melanocortin-4 receptor antagonist TCMCB07 ameliorates cancer- and chronic kidney disease-associated cachexia. J Clin Invest 130, 4921-4934 https://doi.org/10.1172/JCI138392
- Vos TJ, Caracoti A, Che JL et al (2004) Identification of 2-[2-[2-(5-bromo-2- methoxyphenyl)-ethyl]-3-fluorophenyl]-4,5-dihydro-1H-imidazole (ML00253764), a small molecule melanocortin 4 receptor antagonist that effectively reduces tumor-induced weight loss in a mouse model. J Med Chem 47, 1602-1604 https://doi.org/10.1021/jm034244g
- Wisse BE, Frayo RS, Schwartz MW and Cummings DE (2001) Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology 142, 3292-3301 https://doi.org/10.1210/endo.142.8.8324
- Marks DL, Ling N and Cone RD (2001) Role of the central melanocortin system in cachexia. Cancer Res 61, 1432-1438
- Duan J, Cheng M, Xu Y et al (2022) Exogenous melatonin alleviates skeletal muscle wasting by regulating hypothalamic neuropeptides expression in endotoxemia rats. Neurochem Res 47, 885-896 https://doi.org/10.1007/s11064-021-03489-6
- Duan K, Chen Q, Cheng M et al (2016) Hypothalamic activation is essential for endotoxemia-induced acute muscle wasting. Sci Rep 6, 38544