DOI QR코드

DOI QR Code

Numerical Model Test of Spilled Oil Transport Near the Korean Coasts Using Various Input Parametric Models

  • Hai Van Dang (Department of Marine Science and Convergent Engineering, Hanyang University ERICA) ;
  • Suchan Joo (Department of Marine Science and Convergent Engineering, Hanyang University ERICA) ;
  • Junhyeok Lim (Department of Marine Science and Convergent Engineering, Hanyang University ERICA) ;
  • Jinhwan Hur (Department of Marine Science and Convergent Engineering, Hanyang University ERICA) ;
  • Sungwon Shin (Department of Marine Science and Convergent Engineering, Hanyang University ERICA)
  • 투고 : 2024.01.05
  • 심사 : 2024.03.20
  • 발행 : 2024.04.30

초록

Oil spills pose significant threats to marine ecosystems, human health, socioeconomic aspects, and coastal communities. Accurate real-time predictions of oil slick transport along coastlines are paramount for quick preparedness and response efforts. This study used an open-source OpenOil numerical model to simulate the fate and trajectories of oil slicks released during the 2007 Hebei Spirit accident along the Korean coasts. Six combinations of input parameters, derived from a five-day met-ocean dataset incorporating various hydrodynamic, meteorological, and wave models, were investigated to determine the input variables that lead to the most reasonable results. The predictive performance of each combination was evaluated quantitatively by comparing the dimensions and matching rates between the simulated and observed oil slicks extracted from synthetic aperture radar (SAR) data on the ocean surface. The results show that the combination incorporating the Hybrid Coordinate Ocean Model (HYCOM) for hydrodynamic parameters exhibited more substantial agreement with the observed spill areas than Copernicus Marine Environment Monitoring Service (CMEMS), yielding up to 88% and 53% similarity, respectively, during a more than four-day oil transportation near Taean coasts. This study underscores the importance of integrating high-resolution met-ocean models into oil spill modeling efforts to enhance the predictive accuracy regarding oil spill dynamics and weathering processes.

키워드

과제정보

This study was based upon work supported by the Korean Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korean government (KCG, MOIS, NFA) [RS-2022-001549812, Development of technology to respond to marine fires and chemical accidents using wearable devices] and Korean Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries, Korea (No. RS-2023-00256687).

참고문헌

  1. Abascal, A. J., Castanedo, S., Nunez, P., Mellor, A., Clements, A., Perez, B., ... & Medina, R. (2017). A high-resolution operational forecast system for oil spill response in Belfast Lough. Marine Pollution Bulletin, 114(1), 302-314. https://doi.org/10.1016/j.marpolbul.2016.09.042 
  2. Abdallah, I. M., & Chantsev, V. Y. (2022). Simulating oil spill movement and behavior: a case study from the Gulf of Suez, Egypt. Modeling Earth Systems and Environment, 8(4), 4553-4562. https://doi.org/10.1007/s40808-022-01449-9 
  3. Androulidakis, Y., Kourafalou, V., Robert Hole, L., Le Henaff, M., & Kang, H. (2020). Pathways of oil spills from potential Cuban offshore exploration: Influence of ocean circulation. Journal of marine science and engineering, 8(7), 535. https://doi.org/10.3390/jmse8070535 
  4. Dang, H. V., Shin, S., Lim, J., Joo, S., Hur, J. (2023). Numerical model test of spilled oil transport near the Korean coasts using various input parametric modules.The proceedings of 2023 Fall Conference of the Korea Society of Ocean Engineering (KSOE). 
  5. De Dominicis, M., Bruciaferri, D., Gerin, R., Pinardi, N., Poulain, P. M., Garreau, P., ... & Manganiello, C. (2016). A multi-model assessment of the impact of currents, waves, and wind in modelling surface drifters and oil spill. Deep Sea research part II: topical studies in oceanography, 133, 21-38. https://doi.org/10.1016/j.dsr2.2016.04.002 
  6. De Dominicis, M., Pinardi, N. A. D. I. A., Zodiatis, G., & Archetti, R. J. G. M. D. (2013). MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting-Part 2: Numerical simulations and validations. Geoscientific Model Development, 6(6), 1871-1888. https://doi.org/10.5194/gmd-6-1871-2013 
  7. French-McCay, D. P., Spaulding, M. L., Crowley, D., Mendelsohn, D., Fontenault, J., & Horn, M. (2021). Validation of oil trajectory and fate modeling of the Deepwater Horizon oil spill. Frontiers in Marine Science, 8, 618463. https://doi.org/10.3389/fmars.2021.618463 
  8. Hole, L. R., Dagestad, K. F., Rohrs, J., Wettre, C., Kourafalou, V. H., Androulidakis, Y., Kang, H., Le Henaff, M., & Garcia-Pineda, O. (2019). The Deepwater Horizon oil slick: simulations of river front effects and oil droplet size distribution. Journal of marine science and engineering, 7(10), 329. https://doi.org/10.3390/jmse7100329 
  9. ITOPF, (2020). Handbook. https://www.itopf.org/fileadmin/uploads/itopf/data/Documents/Company_Lit/ITOPF_Handbook_2020.pdf. 
  10. Jung, T. H., & Son, S. (2018). Oil spill simulation by coupling three-dimensional hydrodynamic model and oil spill model. Journal of Ocean Engineering and Technology, 32(6), 474-484. https://doi.org/10.26748/KSOE.2018.32.6.474 
  11. Keramea, P., Kokkos, N., Gikas, G. D., & Sylaios, G. (2022). Operational modeling of North Aegean oil spills forced by real-time met-ocean forecasts. Journal of Marine Science and Engineering, 10(3), 411. https://doi.org/10.3390/jmse10030411 
  12. Keramea, P., Kokkos, N., Zodiatis, G., & Sylaios, G. (2023). Modes of operation and forcing in oil spill modeling: state-of-art, deficiencies and callenges. Journal of Marine Science and Engineering, 11(6), 1165. https://doi.org/10.3390/jmse11061165 
  13. Kim, J. C., Yu, D. H., Sim, J. E., Son, Y. T., Bang, K. Y., & Shin, S. (2023). Validation of opendrift-based drifter trajectory prediction tTechnique for maritime search and rescue. Journal of Ocean Engineering and Technology, 37(4), 145-157. https://doi.org/10.26748/KSOE.2023.018 
  14. Kim, T. H., Yang, C. S., Oh, J. H., & Ouchi, K. (2014). Analysis of the contribution of wind drift factor to oil slick movement under strong tidal condition: Hebei Spirit oil spill case. PloS one, 9(1), e87393. https://doi.org/10.1371/journal.pone.0087393 
  15. Korean Coast Guard (KCG). (2021). Korea Coast Guard Annual Report. https://www.kcg.go.kr/ebook/whitebook/2020/index.html 
  16. Law-Chune, S., Aouf, L., Dalphinet, A., Levier, B., Drillet, Y., & Drevillon, M. (2021). WAVERYS: a CMEMS global wave reanalysis during the altimetry period. Ocean Dynamics, 71, 357-378. https://doi.org/10.1007/s10236-020-01433-w 
  17. Lee, K. H., Kim, T. G., & Cho, Y. H. (2020). Influence of tidal current, wind, and wave in Hebei Spirit oil spill modeling. Journal of Marine Science and Engineering, 8(2), 69. https://doi.org/10.3390/jmse8020069 
  18. Meza-Padilla, R., Enriquez, C., & Appendini, C. M. (2021). Rapid assessment tool for oil spill planning and contingencies. Marine Pollution Bulletin, 166, 112196. https://doi.org/10.1016/j.marpolbul.2021.112196 
  19. Nguyen, T. H. H., Hou, T. H., Pham, H. A., & Tsai, C. C. (2023). Hindcast of oil spill pollution in the East China Sea in January 2018. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 14750902231162171. https://doi.org/10.1177/14750902231162171 
  20. Park, K. S., Heo, K. Y., Jun, K., Kwon, J. I., Kim, J., Choi, J. Y., ... & Jeong, S. H. (2015). Development of the operational oceanographic system of Korea. Ocean Science Journal, 50, 353-369. https://doi.org/10.1007/s12601-015-0033-1 
  21. Rohrs, J., Dagestad, K. F., Asbjornsen, H., Nordam, T., Skancke, J., Jones, C. E., & Brekke, C. (2018). The effect of vertical mixing on the horizontal drift of oil spills. Ocean Science, 14(6), 15811601. https://doi.org/10.5194/os-14-1581-2018 
  22. Sepp Neves, A. A., Pinardi, N., Navarra, A., & Trotta, F. (2020). A general methodology for beached oil spill hazard mapping. Frontiers in Marine Science, 7, 65. https://doi.org/10.3389/fmars.2020.00065 
  23. Siqueira, P. G. S. C., Silva, J. A. M., Gois, M. L. B., Duarte, H. O., Moura, M. C., Silva, M. A., & Araujo, M. C. (2022). Numerical simulations of potential oil spills near Fernando de Noronha archipelago. Trends in Maritime Technology and Engineering, 273-282. 
  24. Zacharias, D. C., Gama, C. M., Harari, J., da Rocha, R. P., & Fornaro, A. (2021). Mysterious oil spill on the Brazilian coast-part 2: a probabilistic approach to fill gaps of uncertainties. Marine pollution bulletin, 173, 113085. https://doi.org/10.1016/j.marpolbul.2021.113085 
  25. Zhang, X., Cheng, L., Zhang, F., Wu, J., Li, S., Liu, J., ... & Li, M. (2020). Evaluation of multi-source forcing datasets for drift trajectory prediction using Lagrangian models in the South China Sea. Applied Ocean Research, 104, 102395. https://doi.org/10.1016/j.apor.2020.102395