과제정보
This study was based upon work supported by the Korean Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korean government (KCG, MOIS, NFA) [RS-2022-001549812, Development of technology to respond to marine fires and chemical accidents using wearable devices] and Korean Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries, Korea (No. RS-2023-00256687).
참고문헌
- Abascal, A. J., Castanedo, S., Nunez, P., Mellor, A., Clements, A., Perez, B., ... & Medina, R. (2017). A high-resolution operational forecast system for oil spill response in Belfast Lough. Marine Pollution Bulletin, 114(1), 302-314. https://doi.org/10.1016/j.marpolbul.2016.09.042
- Abdallah, I. M., & Chantsev, V. Y. (2022). Simulating oil spill movement and behavior: a case study from the Gulf of Suez, Egypt. Modeling Earth Systems and Environment, 8(4), 4553-4562. https://doi.org/10.1007/s40808-022-01449-9
- Androulidakis, Y., Kourafalou, V., Robert Hole, L., Le Henaff, M., & Kang, H. (2020). Pathways of oil spills from potential Cuban offshore exploration: Influence of ocean circulation. Journal of marine science and engineering, 8(7), 535. https://doi.org/10.3390/jmse8070535
- Dang, H. V., Shin, S., Lim, J., Joo, S., Hur, J. (2023). Numerical model test of spilled oil transport near the Korean coasts using various input parametric modules.The proceedings of 2023 Fall Conference of the Korea Society of Ocean Engineering (KSOE).
- De Dominicis, M., Bruciaferri, D., Gerin, R., Pinardi, N., Poulain, P. M., Garreau, P., ... & Manganiello, C. (2016). A multi-model assessment of the impact of currents, waves, and wind in modelling surface drifters and oil spill. Deep Sea research part II: topical studies in oceanography, 133, 21-38. https://doi.org/10.1016/j.dsr2.2016.04.002
- De Dominicis, M., Pinardi, N. A. D. I. A., Zodiatis, G., & Archetti, R. J. G. M. D. (2013). MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting-Part 2: Numerical simulations and validations. Geoscientific Model Development, 6(6), 1871-1888. https://doi.org/10.5194/gmd-6-1871-2013
- French-McCay, D. P., Spaulding, M. L., Crowley, D., Mendelsohn, D., Fontenault, J., & Horn, M. (2021). Validation of oil trajectory and fate modeling of the Deepwater Horizon oil spill. Frontiers in Marine Science, 8, 618463. https://doi.org/10.3389/fmars.2021.618463
- Hole, L. R., Dagestad, K. F., Rohrs, J., Wettre, C., Kourafalou, V. H., Androulidakis, Y., Kang, H., Le Henaff, M., & Garcia-Pineda, O. (2019). The Deepwater Horizon oil slick: simulations of river front effects and oil droplet size distribution. Journal of marine science and engineering, 7(10), 329. https://doi.org/10.3390/jmse7100329
- ITOPF, (2020). Handbook. https://www.itopf.org/fileadmin/uploads/itopf/data/Documents/Company_Lit/ITOPF_Handbook_2020.pdf.
- Jung, T. H., & Son, S. (2018). Oil spill simulation by coupling three-dimensional hydrodynamic model and oil spill model. Journal of Ocean Engineering and Technology, 32(6), 474-484. https://doi.org/10.26748/KSOE.2018.32.6.474
- Keramea, P., Kokkos, N., Gikas, G. D., & Sylaios, G. (2022). Operational modeling of North Aegean oil spills forced by real-time met-ocean forecasts. Journal of Marine Science and Engineering, 10(3), 411. https://doi.org/10.3390/jmse10030411
- Keramea, P., Kokkos, N., Zodiatis, G., & Sylaios, G. (2023). Modes of operation and forcing in oil spill modeling: state-of-art, deficiencies and callenges. Journal of Marine Science and Engineering, 11(6), 1165. https://doi.org/10.3390/jmse11061165
- Kim, J. C., Yu, D. H., Sim, J. E., Son, Y. T., Bang, K. Y., & Shin, S. (2023). Validation of opendrift-based drifter trajectory prediction tTechnique for maritime search and rescue. Journal of Ocean Engineering and Technology, 37(4), 145-157. https://doi.org/10.26748/KSOE.2023.018
- Kim, T. H., Yang, C. S., Oh, J. H., & Ouchi, K. (2014). Analysis of the contribution of wind drift factor to oil slick movement under strong tidal condition: Hebei Spirit oil spill case. PloS one, 9(1), e87393. https://doi.org/10.1371/journal.pone.0087393
- Korean Coast Guard (KCG). (2021). Korea Coast Guard Annual Report. https://www.kcg.go.kr/ebook/whitebook/2020/index.html
- Law-Chune, S., Aouf, L., Dalphinet, A., Levier, B., Drillet, Y., & Drevillon, M. (2021). WAVERYS: a CMEMS global wave reanalysis during the altimetry period. Ocean Dynamics, 71, 357-378. https://doi.org/10.1007/s10236-020-01433-w
- Lee, K. H., Kim, T. G., & Cho, Y. H. (2020). Influence of tidal current, wind, and wave in Hebei Spirit oil spill modeling. Journal of Marine Science and Engineering, 8(2), 69. https://doi.org/10.3390/jmse8020069
- Meza-Padilla, R., Enriquez, C., & Appendini, C. M. (2021). Rapid assessment tool for oil spill planning and contingencies. Marine Pollution Bulletin, 166, 112196. https://doi.org/10.1016/j.marpolbul.2021.112196
- Nguyen, T. H. H., Hou, T. H., Pham, H. A., & Tsai, C. C. (2023). Hindcast of oil spill pollution in the East China Sea in January 2018. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 14750902231162171. https://doi.org/10.1177/14750902231162171
- Park, K. S., Heo, K. Y., Jun, K., Kwon, J. I., Kim, J., Choi, J. Y., ... & Jeong, S. H. (2015). Development of the operational oceanographic system of Korea. Ocean Science Journal, 50, 353-369. https://doi.org/10.1007/s12601-015-0033-1
- Rohrs, J., Dagestad, K. F., Asbjornsen, H., Nordam, T., Skancke, J., Jones, C. E., & Brekke, C. (2018). The effect of vertical mixing on the horizontal drift of oil spills. Ocean Science, 14(6), 15811601. https://doi.org/10.5194/os-14-1581-2018
- Sepp Neves, A. A., Pinardi, N., Navarra, A., & Trotta, F. (2020). A general methodology for beached oil spill hazard mapping. Frontiers in Marine Science, 7, 65. https://doi.org/10.3389/fmars.2020.00065
- Siqueira, P. G. S. C., Silva, J. A. M., Gois, M. L. B., Duarte, H. O., Moura, M. C., Silva, M. A., & Araujo, M. C. (2022). Numerical simulations of potential oil spills near Fernando de Noronha archipelago. Trends in Maritime Technology and Engineering, 273-282.
- Zacharias, D. C., Gama, C. M., Harari, J., da Rocha, R. P., & Fornaro, A. (2021). Mysterious oil spill on the Brazilian coast-part 2: a probabilistic approach to fill gaps of uncertainties. Marine pollution bulletin, 173, 113085. https://doi.org/10.1016/j.marpolbul.2021.113085
- Zhang, X., Cheng, L., Zhang, F., Wu, J., Li, S., Liu, J., ... & Li, M. (2020). Evaluation of multi-source forcing datasets for drift trajectory prediction using Lagrangian models in the South China Sea. Applied Ocean Research, 104, 102395. https://doi.org/10.1016/j.apor.2020.102395