과제정보
The author extends their appreciation to the deanship of Scientific Research at King Khalid University for funding this work through research groups under grant number RGP2/126/44".
참고문헌
- Abbasi, F.M., Shanakhat, I. and Shehzad, S.A. (2019), "Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects", J. Magn. Magn. Mater., 474, 434-441. https://doi.org/10.1016/j.jmmm.2018.10.132
- Afzali, M. and Rostamiyan, Y. (2020), "Study the effect of machining process and Nano Sio2 on GFRP mechanical performances", Struct. Eng. Mech., 76(2), 175-191. https://doi.org/10.12989/sem.2020.76.2.175
- Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res, 8(2), 157-167. https://doi.org/10.1007/s00366-020-01103-
- Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X
- Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
- Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
- Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39. https://doi.org/10.12989/anr.2018.6.1.039
- Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219. https://doi.org/10.12989/anr.2018.6.3.219
- Ambreen, T. and Kim, M.H. (2018), "Effect of fin shape on the thermal performance of nanofluid-cooled micro pin-fin heat sinks", Int. J. Heat Mass Transf., 126, 245-256. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.164
- Anwar, M.I., Ali, M., Rafique, K. and Shehzad, S.A. (2019), "Soret-Dufour and radiative aspects in hydromagnetized nanofluid flow in stratified porous medium", SN Appl. Sci., 1(11), 1430. https://doi.org/10.1007/s42452-019-1473-5
- Avcar M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
- Beg, O.A., Uddin, M.J. and Khan, W.A. (2015), "Bioconvective non-Newtonian nanofluid transport in porous media containing micro-organisms in a moving free stream", J. Mech. Med. Biol., 15(05), 1550071. https://doi.org/10.1142/S0219519415500712
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. https://doi.org/10.12989/anr.2019.7.6.443
- Bilal, M., Sagheer, M. and Hussain, S. (2018), "Numerical study of magnetohydrodynamics and thermal radiation on Williamson nanofluid flow over a stretching cylinder with variable thermal conductivity", Alexandria Eng. J., 57(4), 3281-3289. https://doi.org/10.1016/j.aej.2017.12.006
- Blasius, H. (1950), "The boundary layers in fluids with little friction", Zeitschrift fuer Mathematik und Physik, 56(1). https://ntrs.nasa.gov/citations/20050028493
- Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.9.73.209
- Buongiorno, J. (2006), "Convective transport in nanofluids", J. Heat Transf., 128(3), 240-250. https://doi.org/10.1115/1.2150834
- Chaudhary, S. and Kanika, K.M. (2019), "Impacts of viscous dissipation and Joule heating on hydromagnetic boundary layer flow of nanofluids over a flat surface subjected to Newtonian heating", SN Appl. Sci., 1(12), 1709. https://doi.org/10.1007/s42452-019-1714-7
- Choi, S.U. and Eastman, J.A. (1995), "Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP84938; CONF-951135-29)", Argonne National Lab., IL, U.S.A.
- Demir, E., Callioglu, H., Sayer, M. and Kavla, F. (2020), "Effect of chitosan/carbon nanotube fillers on vibration behaviors of drilled composite plates", Steel Compos. Struct., 35(6), 789-798. https://doi.org/10.12989/scs.2020.35.6.789
- Dong, Z., Li, X., Yamaguchi, H. and Yu, P. (2024), "Magnetic field effect on the sedimentation process of two non-magnetic particles inside a ferrofluid", J. Magn. Magn. Mater., 589, 171501. https://doi.org/10.1016/j.jmmm.2023.171501
- Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135. https://doi.org/10.12989/anr.2019.7.2.135
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/10.12989/anr.2019.7.1.039
- Farokhian, A. (2020), "The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates", Steel Compos. Struct., 34(5), 733-742. https://doi.org/10.12989/scs.2020.34.5.733
- Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631
- Fu, Y., Liu, Y., Wang, J., Wang, Y., Xu, G. and Wen, J. (2024), "Local resistance characteristics of elbows for supercritical pressure RP-3 flowing in serpentine micro-tubes", Propuls. Power Res., In Press. https://doi.org/10.1016/j.jppr.2023.02.009
- Fu, Z.H., Yang, B.J., Shan, M.L., Li, T., Zhu, Z.Y., Ma, C.P., Zhang, X., Gou, G.Q., Wang, Z.R, and Gao, W. (2020), "Hydrogen embrittlement behavior of SUS301L -MT stainless steel laser-arc hybrid welded joint localized zones", Corros. Sci., 164, 108337. https://doi.org/10.1016/j.corsci.2019.108337
- Guo, J., Ding, B., Wang, Y. and Han, Y. (2023), "Co-optimization for hydrodynamic lubrication and leakage of V-shape textured bearings via linear weighting summation", Physica Scripta, 98(12), 125218. https://doi.org/10.1088/1402-4896/ad07be
- Hayat, T., Bashir, G., Waqas, M. and Alsaedi, A. (2016), "MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer", J. Mol. Liq., 223, 836-844. https://doi.org/10.1016/j.molliq.2016.08.104
- Hayat, T., Saeed, Y., Asad, S. and Alsaedi, A. (2015), "Soret and Dufour effects in the flow of Williamson fluid over an unsteady stretching surface with thermal radiation", Zeitschrift fur Naturforschung A, 70(4), 235-243. https://doi.org/10.1515/zna-2014-0252
- Hejri, Z., Hejri, M., Omidvar, M. and Morshedi, S. (2020), "A novel nanocomposite as adsorbent for formaldehyde removal from aqueous solution", Adv. Nano Res., 8(1), 1. https://doi.org/10.12989/anr.2020.8.1.001
- Hill, N.A., Pedley, T.J. and Kessler, J.O. (1989), "Growth of bioconvection patterns in a suspension of gyrotactic microorganisms in a layer of finite depth", J. Fluid Mech., 208, 509-543. https://doi.org/10.1017/S0022112089002922
- Hosseini, S.M. (2020), "A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with energy dissipation", Struct. Eng. Mech., 73(3), 287-302. https://doi.org/10.12989/sem.2020.73.3.287
- Hsiao, K.L. (2017), "Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature", Int. J. Heat Mass Transf., 112, 983-990. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.042
- Izadi, M., Mohebbi, R., Delouei, A.A. and Sajjadi, H. (2019), "Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields", Int. J. Mech. Sci., 151, 154-169. https://doi.org/10.1016/j.ijmecsci.2018.11.019
- Karami B, Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
- Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
- Khan, M., Malik, M.Y., Salahuddin, T., Rehman, K.U. and Naseer, M. (2017), "MHD flow of Williamson nanofluid over a cone and plate with chemically reactive species", J. Mol. Liq., 231, 580-588. https://doi.org/10.1016/j.molliq.2017.02.031
- Khan, S.U., Shehzad, S.A. and Ali, N. (2018), "Interaction of magneto-nanoparticles in Williamson fluid flow over convective oscillatory moving surface", J. Brazil. Soc. Mech. Sci. Eng., 40(4), 195. https://doi.org/10.1007/s40430-018-1126-4
- Khan, W.A., Uddin, M.J. and Ismail, A.M. (2013), "Free convection of non-Newtonian nanofluids in porous media with gyrotactic microorganisms", Transp. Por. Med., 97(2), 241-252. https://doi.org/10.1007/s11242-012-0120-z
- Khan, W., Gul, T., Idrees, M., Islam, S. and Khan, I. (2017), "Dufour and Soret effect with thermal radiation on the nano film flow of Williamson fluid past over an unsteady stretching sheet", J. Nanofl., 6(2), 243-253. https://doi.org/10.1166/jon.2017.1328
- Kuang, W., Wang, H., Li, X., Zhang, J., Zhou, Q. and Zhao, Y. (2018), "Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: Modeling and applications", Acta Materialia, 159, 16-30. https://doi.org/10.1016/j.actamat.2018.08.00
- Kuznetsov, A.V. (2010), "The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms", Int. Commun. Heat Mass Transf., 37(10), 1421-1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015
- Li, X., Yu, P., Niu, X., Yamaguchi, H. and Li, D. (2020), "Noncontact manipulation of nonmagnetic materials by using a uniform magnetic field: Experiment and simulation", J. Magn. Magn. Mater., 497, 165957. https://doi.org/10.1016/j.jmmm.2019.165957
- Li, Z., Sheikholeslami, M., Mittal, A.S., Shafee, A. and Haq, R.U. (2019), "Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method", Eur. Phys. J. Plus, 134(1), 1-10. https://doi.org/10.1140/epjp/i2019-12406-8
- Long, X., Chong, K., Su, Y., Du, L. and Zhang, G. (2023), "Connecting the macroscopic and mesoscopic properties of sintered silver nanoparticles by crystal plasticity finite element method", Eng. Fract. Mech., 281, 109137. https://doi.org/10.1016/j.engfracmech.2023.109137
- Ma, Y., Mohebbi, R., Rashidi, M. M., Manca, O. and Yang, Z. (2019), "Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method", J. Therm. Anal. Calorim., 135(6), 3197-3213. https://doi.org/10.1007/s10973-018-7518-y
- Madani H, Hosseini H, and Shokravi M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
- Malik, M.Y., Bibi, M., Khan, F. and Salahuddin, T. (2016), "Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption", AIP Adv., 6(3), 035101. https://doi.org/10.1063/1.4943398
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-777. https://doi.org/10.12989/scs.2020.35.6.765
- Mutuku, W.N. and Makinde, O.D. (2014), "Hydromagnetic bio-convection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms", Comput. Fl., 95, 88-97. https://doi.org/10.1016/j.compfluid.2014.02.026
- Nadeem, S., Hussain, S.T. and Lee, C. (2013), "Flow of a Williamson fluid over a stretching sheet", Brazil. J. Chem. Eng., 30(3), 619-625. http://doi.org/10.1590/S0104-66322013000300019
- Nazemnezhad, R. and Shokrollahi, H. (2020), "Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect", Steel Compos. Struct., 35(3), 449-462. https://doi.org/10.12989/scs.2020.35.3.449
- Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., 8(1), 59. https://doi.org/10.12989/anr.2020.8.1.059
- Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nanocone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., 8(1), 13-24. https://doi.org/10.12989/anr.2020.8.1.013
- Pedley, T.J. and Kessler, J.O. (1992), "Hydrodynamic phenomena in suspensions of swimming microorganisms", Annual Rev. Fl. Mech., 24(1), 313-358. https://doi.org/10.1146/annurev.fl.24.010192.001525
- Rashid, U. and Liang, H. (2020), "Investigation of nanoparticles shape effects on MHD nanofluid flow and heat transfer over a rotating stretching disk through porous medium", Int. J. Numer. Meth. Heat Fl. Flow., 30(12), 5169-5189. https://doi.org/10.1108/HFF-10-2019-0743
- Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S. B. (2020), "Size-dependent buckling behaviour of FG annular/ circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 73(3), 225-238. https://doi.org/10.12989/sem.2020.73.3.225
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res, 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265
- Sahmani, S., Fattahi, A.M. and Ahmed, N.A. (2020), "Develop a refined truncated cubic lattice structure for nonlinear large-amplitude vibrations of micro/nano-beams made of nanoporous materials", Eng. Comput., 36, 359-375. https://doi.org/10.1007/s00366-019-00703-6
- Salahuddin, T., Malik, M. Y., Hussain, A., Bilal, S. and Awais, M. (2016), "MHD flow of Cattanneo-Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: Using numerical approach", J. Magn. Magn. Mater., 401, 991-997. https://doi.org/10.1016/j.jmmm.2015.11.022
- Shafee, A., Haq, R.U., Sheikholeslami, M., Herki, J.A.A. and Nguyen, T.K. (2019), "An entropy generation analysis for MHD water based Fe3O4 ferrofluid through a porous semi annulus cavity via CVFEM", Int. Commun. Heat Mass Transf., 108, 104295. https://doi.org/10.1016/j.icheatmasstransfer.2019.104295
- Shah, Z., Bonyah, E., Islam, S., Khan, W. and Ishaq, M. (2018), "Radiative MHD thin film flow of Williamson fluid over an unsteady permeable stretching sheet", Heliyon, 4(10), e00825. https://doi.org/10.1016/j.heliyon.2018.e00825
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337
- She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179
- Shehzad, S.A., Abbas, Z. and Rauf, A. (2019), "Finite difference approach and successive over relaxation (SOR) method for MHD micropolar fluid with Maxwell-Cattaneo law and porous medium", Physica Scripta, 94(11), 115228. https://doi.org/10.1088/1402-4896/ab3264
- Sheikholeslami, M. (2018), "Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces", J. Mol. Liq., 266, 495-503. https://doi.org/10.1016/j.molliq.2018.06.083
- Sheikholeslami, M., Mehryan, S.A.M., Shafee, A. and Sheremet, M.A. (2019), "Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity", J. Mol. Liq., 277, 388-396. https://doi.org/10.1016/j.molliq.2018.12.104
- Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R.S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Transf., 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076
- Simsek M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Sun, L., Liang, T., Zhang, C. and Chen, J. (2023), "The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite", Phys. Fl., 35(3), 32002. https://doi.org/10.1063/5.0138294
- Tiwari, R.K. and Das, M.K. (2007), "Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids", Int. J. Heat Mass Transf., 50(9-10), 2002-2018. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034
- Turkyilmazoglu, M. (2017), "Mixed convection flow of magneto-hydrodynamic micropolar fluid due to a porous heated/cooled deformable plate: exact solutions", Int. J. Heat Mass Transf., 106, 127-134. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.056
- Ullah, A., Shah, Z., Kumam, P., Ayaz, M., Islam, S. and Jameel, M. (2019), "Viscoelastic MHD nanofluid thin film flow over an unsteady vertical stretching sheet with entropy generation", Processes, 7(5), 262. https://doi.org/10.3390/pr7050262
- Waqas, H., Khan, S.U., Imran, M. and Bhatti, M.M. (2019), "Thermally developed Falkner-Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: Buongiorno's nanofluid model", Physica Scripta, 94(11), 115304. https://doi.org/10.1088/1402-4896/ab2ddc
- Williamson, R.V. (1929), "The flow of pseudoplastic materials", Ind. Eng. Chem., 21(11), 1108-1111. https://doi.org/10.1021/ie50239a035
- Xun, S., Zhao, J., Zheng, L. and Zhang, X. (2017), "Bioconvection in rotating system immersed in nanofluid with temperature dependent viscosity and thermal conductivity", Int. J. Heat Mass Transf., 111, 1001-1006. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.074
- Yang, S., Zhang, Y., Sha, Z., Huang, Z., Wang, H., Wang, F. and Li, J. (2022), "Deterministic manipulation of heat flow via three-dimensional-printed thermal meta-materials for multiple protection of critical components", ACS Appl. Mater. Interf., 14(34), 39354-39363. doi: 10.1021/acsami.2c09602
- Yang, W., Jiang, X., Tian, X., Hou, H. and Zhao, Y. (2023), "Phase-field simulation of nano-α' precipitates under irradiation and dislocations", J. Mater. Res. Technol., 22, 1307-1321. https://doi.org/10.1016/j.jmrt.2022.11.165
- Zangooee, M.R., Hosseinzadeh, K. and Ganji, D.D. (2019), "Hydrothermal analysis of MHD nanofluid (TiO2-GO) flow between two radiative stretchable rotating disks using AGM", Case Stud. Therm. Eng., 14, 100460. https://doi.org/10.1016/j.csite.2019.100460
- Zhang, G., Yang, Z., Li, X., Deng, S., Liu, Y., Zhou, H., Peng, M., Fu, Z., Chen, R., Meng, D., Zhong, L., Zhou, Q. and Wei, S. (2024), "Gamma-ray irradiation induced dielectric loss of SiO2/Si heterostructures in through-silicon vias (TSVs) by forming border traps", ACS Appl. Electr. Mater., 6(2), 1339-1346. https://doi.org/10.1021/acsaelm.3c01646
- Zhu, Q., Chen, J., Gou, G., Chen, H. and Li, P. (2017), "Ameliorated longitudinal critically refracted-Attenuation velocity method for welding residual stress measurement", J. Mater. Proc. Technol. 246, 267-275. https://doi.org/10.1016/j.jmatprotec.2017.03.022
- Zhu, S., Li, X., Bian, Y., Dai, N., Yong, J., Hu, Y., Hu, Y, Li, J., Wu, D. and Chu, J. (2023), "Inclination-enabled generalized microfluid rectifiers via anisotropic slippery hollow tracks", Adv. Mater. Technol., 8(16), 2300267. https://doi.org/10.1002/admt.202300267
- Zuhra, S., Khan, N.S. and Islam, S. (2018), "Magnetohydrodynamic second-grade nanofluid flow containing nanoparticles and gyrotactic microorganisms", Comput. Appl. Math., 37(5), 6332-6358. https://doi.org/10.1007/s40314-018-0683-6