DOI QR코드

DOI QR Code

Influence of thermal radiation and magnetohydrodynamic on the laminar flow: Williamson fluid for velocity profile

  • Muzamal Hussain (Department of Mathematics, University of Sahiwal) ;
  • Humaira Sharif (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mohammad Amien Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Hamdi Ayed (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Abir Mouldi (Department of Industrial Engineering, College of Engineering, King Khalid University) ;
  • Muhammad Naeem Mohsin (Institute for Islamic Theological Studies, University of Vienna) ;
  • Sajjad Hussain (Department of mathematics, Government Post graduate college) ;
  • Abdelouahed Tounsi (Materials and Hydrology Laboratory University of Sidi Bel Abbes, Algeria Faculty of Technology Civil Engineering Department)
  • 투고 : 2021.12.16
  • 심사 : 2024.03.02
  • 발행 : 2024.04.25

초록

Latest advancement in field of fluid dynamics has taken nanofluid under consideration which shows large thermal conductance and enlarges property of heat transformation in fluids. Motivated by this, the key aim of the current investigation scrutinizes the influence of thermal radiation and magnetohydrodynamic on the laminar flow of an incompressible two-dimensional Williamson nanofluid over an inclined surface in the presence of motile microorganism. In addition, the impact of heat absorption/generation and Arrhenius activation energy is also examined. A mathematical modeled is developed which stimulate the physical flow problem. By using the compatible similarities, we transfer the governing PDEs into ODEs. The analytic approach based on Homotopy analysis method is introduced to impose the analytic solution by using Mathematica software. The impacts of distinct pertinent variable on velocity profiles are investigated through graphs.

키워드

과제정보

The author extends their appreciation to the deanship of Scientific Research at King Khalid University for funding this work through research groups under grant number RGP2/126/44".

참고문헌

  1. Abbasi, F.M., Shanakhat, I. and Shehzad, S.A. (2019), "Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects", J. Magn. Magn. Mater., 474, 434-441. https://doi.org/10.1016/j.jmmm.2018.10.132
  2. Afzali, M. and Rostamiyan, Y. (2020), "Study the effect of machining process and Nano Sio2 on GFRP mechanical performances", Struct. Eng. Mech., 76(2), 175-191. https://doi.org/10.12989/sem.2020.76.2.175
  3. Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res, 8(2), 157-167. https://doi.org/10.1007/s00366-020-01103-
  4. Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X
  5. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
  6. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
  7. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
  8. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39. https://doi.org/10.12989/anr.2018.6.1.039
  9. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219. https://doi.org/10.12989/anr.2018.6.3.219
  10. Ambreen, T. and Kim, M.H. (2018), "Effect of fin shape on the thermal performance of nanofluid-cooled micro pin-fin heat sinks", Int. J. Heat Mass Transf., 126, 245-256. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.164
  11. Anwar, M.I., Ali, M., Rafique, K. and Shehzad, S.A. (2019), "Soret-Dufour and radiative aspects in hydromagnetized nanofluid flow in stratified porous medium", SN Appl. Sci., 1(11), 1430. https://doi.org/10.1007/s42452-019-1473-5
  12. Avcar M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  13. Beg, O.A., Uddin, M.J. and Khan, W.A. (2015), "Bioconvective non-Newtonian nanofluid transport in porous media containing micro-organisms in a moving free stream", J. Mech. Med. Biol., 15(05), 1550071. https://doi.org/10.1142/S0219519415500712
  14. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. https://doi.org/10.12989/anr.2019.7.6.443
  15. Bilal, M., Sagheer, M. and Hussain, S. (2018), "Numerical study of magnetohydrodynamics and thermal radiation on Williamson nanofluid flow over a stretching cylinder with variable thermal conductivity", Alexandria Eng. J., 57(4), 3281-3289. https://doi.org/10.1016/j.aej.2017.12.006
  16. Blasius, H. (1950), "The boundary layers in fluids with little friction", Zeitschrift fuer Mathematik und Physik, 56(1). https://ntrs.nasa.gov/citations/20050028493
  17. Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.9.73.209
  18. Buongiorno, J. (2006), "Convective transport in nanofluids", J. Heat Transf., 128(3), 240-250. https://doi.org/10.1115/1.2150834
  19. Chaudhary, S. and Kanika, K.M. (2019), "Impacts of viscous dissipation and Joule heating on hydromagnetic boundary layer flow of nanofluids over a flat surface subjected to Newtonian heating", SN Appl. Sci., 1(12), 1709. https://doi.org/10.1007/s42452-019-1714-7
  20. Choi, S.U. and Eastman, J.A. (1995), "Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP84938; CONF-951135-29)", Argonne National Lab., IL, U.S.A.
  21. Demir, E., Callioglu, H., Sayer, M. and Kavla, F. (2020), "Effect of chitosan/carbon nanotube fillers on vibration behaviors of drilled composite plates", Steel Compos. Struct., 35(6), 789-798. https://doi.org/10.12989/scs.2020.35.6.789
  22. Dong, Z., Li, X., Yamaguchi, H. and Yu, P. (2024), "Magnetic field effect on the sedimentation process of two non-magnetic particles inside a ferrofluid", J. Magn. Magn. Mater., 589, 171501. https://doi.org/10.1016/j.jmmm.2023.171501
  23. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135. https://doi.org/10.12989/anr.2019.7.2.135
  24. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/10.12989/anr.2019.7.1.039
  25. Farokhian, A. (2020), "The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates", Steel Compos. Struct., 34(5), 733-742. https://doi.org/10.12989/scs.2020.34.5.733
  26. Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631
  27. Fu, Y., Liu, Y., Wang, J., Wang, Y., Xu, G. and Wen, J. (2024), "Local resistance characteristics of elbows for supercritical pressure RP-3 flowing in serpentine micro-tubes", Propuls. Power Res., In Press. https://doi.org/10.1016/j.jppr.2023.02.009
  28. Fu, Z.H., Yang, B.J., Shan, M.L., Li, T., Zhu, Z.Y., Ma, C.P., Zhang, X., Gou, G.Q., Wang, Z.R, and Gao, W. (2020), "Hydrogen embrittlement behavior of SUS301L -MT stainless steel laser-arc hybrid welded joint localized zones", Corros. Sci., 164, 108337. https://doi.org/10.1016/j.corsci.2019.108337
  29. Guo, J., Ding, B., Wang, Y. and Han, Y. (2023), "Co-optimization for hydrodynamic lubrication and leakage of V-shape textured bearings via linear weighting summation", Physica Scripta, 98(12), 125218. https://doi.org/10.1088/1402-4896/ad07be
  30. Hayat, T., Bashir, G., Waqas, M. and Alsaedi, A. (2016), "MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer", J. Mol. Liq., 223, 836-844. https://doi.org/10.1016/j.molliq.2016.08.104
  31. Hayat, T., Saeed, Y., Asad, S. and Alsaedi, A. (2015), "Soret and Dufour effects in the flow of Williamson fluid over an unsteady stretching surface with thermal radiation", Zeitschrift fur Naturforschung A, 70(4), 235-243. https://doi.org/10.1515/zna-2014-0252
  32. Hejri, Z., Hejri, M., Omidvar, M. and Morshedi, S. (2020), "A novel nanocomposite as adsorbent for formaldehyde removal from aqueous solution", Adv. Nano Res., 8(1), 1. https://doi.org/10.12989/anr.2020.8.1.001
  33. Hill, N.A., Pedley, T.J. and Kessler, J.O. (1989), "Growth of bioconvection patterns in a suspension of gyrotactic microorganisms in a layer of finite depth", J. Fluid Mech., 208, 509-543. https://doi.org/10.1017/S0022112089002922
  34. Hosseini, S.M. (2020), "A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with energy dissipation", Struct. Eng. Mech., 73(3), 287-302. https://doi.org/10.12989/sem.2020.73.3.287
  35. Hsiao, K.L. (2017), "Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature", Int. J. Heat Mass Transf., 112, 983-990. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.042
  36. Izadi, M., Mohebbi, R., Delouei, A.A. and Sajjadi, H. (2019), "Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields", Int. J. Mech. Sci., 151, 154-169. https://doi.org/10.1016/j.ijmecsci.2018.11.019
  37. Karami B, Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
  38. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
  39. Khan, M., Malik, M.Y., Salahuddin, T., Rehman, K.U. and Naseer, M. (2017), "MHD flow of Williamson nanofluid over a cone and plate with chemically reactive species", J. Mol. Liq., 231, 580-588. https://doi.org/10.1016/j.molliq.2017.02.031
  40. Khan, S.U., Shehzad, S.A. and Ali, N. (2018), "Interaction of magneto-nanoparticles in Williamson fluid flow over convective oscillatory moving surface", J. Brazil. Soc. Mech. Sci. Eng., 40(4), 195. https://doi.org/10.1007/s40430-018-1126-4
  41. Khan, W.A., Uddin, M.J. and Ismail, A.M. (2013), "Free convection of non-Newtonian nanofluids in porous media with gyrotactic microorganisms", Transp. Por. Med., 97(2), 241-252. https://doi.org/10.1007/s11242-012-0120-z
  42. Khan, W., Gul, T., Idrees, M., Islam, S. and Khan, I. (2017), "Dufour and Soret effect with thermal radiation on the nano film flow of Williamson fluid past over an unsteady stretching sheet", J. Nanofl., 6(2), 243-253. https://doi.org/10.1166/jon.2017.1328
  43. Kuang, W., Wang, H., Li, X., Zhang, J., Zhou, Q. and Zhao, Y. (2018), "Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: Modeling and applications", Acta Materialia, 159, 16-30. https://doi.org/10.1016/j.actamat.2018.08.00
  44. Kuznetsov, A.V. (2010), "The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms", Int. Commun. Heat Mass Transf., 37(10), 1421-1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015
  45. Li, X., Yu, P., Niu, X., Yamaguchi, H. and Li, D. (2020), "Noncontact manipulation of nonmagnetic materials by using a uniform magnetic field: Experiment and simulation", J. Magn. Magn. Mater., 497, 165957. https://doi.org/10.1016/j.jmmm.2019.165957
  46. Li, Z., Sheikholeslami, M., Mittal, A.S., Shafee, A. and Haq, R.U. (2019), "Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method", Eur. Phys. J. Plus, 134(1), 1-10. https://doi.org/10.1140/epjp/i2019-12406-8
  47. Long, X., Chong, K., Su, Y., Du, L. and Zhang, G. (2023), "Connecting the macroscopic and mesoscopic properties of sintered silver nanoparticles by crystal plasticity finite element method", Eng. Fract. Mech., 281, 109137. https://doi.org/10.1016/j.engfracmech.2023.109137
  48. Ma, Y., Mohebbi, R., Rashidi, M. M., Manca, O. and Yang, Z. (2019), "Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method", J. Therm. Anal. Calorim., 135(6), 3197-3213. https://doi.org/10.1007/s10973-018-7518-y
  49. Madani H, Hosseini H, and Shokravi M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
  50. Malik, M.Y., Bibi, M., Khan, F. and Salahuddin, T. (2016), "Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption", AIP Adv., 6(3), 035101. https://doi.org/10.1063/1.4943398
  51. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-777. https://doi.org/10.12989/scs.2020.35.6.765
  52. Mutuku, W.N. and Makinde, O.D. (2014), "Hydromagnetic bio-convection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms", Comput. Fl., 95, 88-97. https://doi.org/10.1016/j.compfluid.2014.02.026
  53. Nadeem, S., Hussain, S.T. and Lee, C. (2013), "Flow of a Williamson fluid over a stretching sheet", Brazil. J. Chem. Eng., 30(3), 619-625. http://doi.org/10.1590/S0104-66322013000300019
  54. Nazemnezhad, R. and Shokrollahi, H. (2020), "Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect", Steel Compos. Struct., 35(3), 449-462. https://doi.org/10.12989/scs.2020.35.3.449
  55. Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., 8(1), 59. https://doi.org/10.12989/anr.2020.8.1.059
  56. Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nanocone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., 8(1), 13-24. https://doi.org/10.12989/anr.2020.8.1.013
  57. Pedley, T.J. and Kessler, J.O. (1992), "Hydrodynamic phenomena in suspensions of swimming microorganisms", Annual Rev. Fl. Mech., 24(1), 313-358. https://doi.org/10.1146/annurev.fl.24.010192.001525
  58. Rashid, U. and Liang, H. (2020), "Investigation of nanoparticles shape effects on MHD nanofluid flow and heat transfer over a rotating stretching disk through porous medium", Int. J. Numer. Meth. Heat Fl. Flow., 30(12), 5169-5189. https://doi.org/10.1108/HFF-10-2019-0743
  59. Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S. B. (2020), "Size-dependent buckling behaviour of FG annular/ circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 73(3), 225-238. https://doi.org/10.12989/sem.2020.73.3.225
  60. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res, 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265
  61. Sahmani, S., Fattahi, A.M. and Ahmed, N.A. (2020), "Develop a refined truncated cubic lattice structure for nonlinear large-amplitude vibrations of micro/nano-beams made of nanoporous materials", Eng. Comput., 36, 359-375. https://doi.org/10.1007/s00366-019-00703-6
  62. Salahuddin, T., Malik, M. Y., Hussain, A., Bilal, S. and Awais, M. (2016), "MHD flow of Cattanneo-Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: Using numerical approach", J. Magn. Magn. Mater., 401, 991-997. https://doi.org/10.1016/j.jmmm.2015.11.022
  63. Shafee, A., Haq, R.U., Sheikholeslami, M., Herki, J.A.A. and Nguyen, T.K. (2019), "An entropy generation analysis for MHD water based Fe3O4 ferrofluid through a porous semi annulus cavity via CVFEM", Int. Commun. Heat Mass Transf., 108, 104295. https://doi.org/10.1016/j.icheatmasstransfer.2019.104295
  64. Shah, Z., Bonyah, E., Islam, S., Khan, W. and Ishaq, M. (2018), "Radiative MHD thin film flow of Williamson fluid over an unsteady permeable stretching sheet", Heliyon, 4(10), e00825. https://doi.org/10.1016/j.heliyon.2018.e00825
  65. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337
  66. She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179
  67. Shehzad, S.A., Abbas, Z. and Rauf, A. (2019), "Finite difference approach and successive over relaxation (SOR) method for MHD micropolar fluid with Maxwell-Cattaneo law and porous medium", Physica Scripta, 94(11), 115228. https://doi.org/10.1088/1402-4896/ab3264
  68. Sheikholeslami, M. (2018), "Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces", J. Mol. Liq., 266, 495-503. https://doi.org/10.1016/j.molliq.2018.06.083
  69. Sheikholeslami, M., Mehryan, S.A.M., Shafee, A. and Sheremet, M.A. (2019), "Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity", J. Mol. Liq., 277, 388-396. https://doi.org/10.1016/j.molliq.2018.12.104
  70. Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R.S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Transf., 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076
  71. Simsek M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  72. Sun, L., Liang, T., Zhang, C. and Chen, J. (2023), "The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite", Phys. Fl., 35(3), 32002. https://doi.org/10.1063/5.0138294
  73. Tiwari, R.K. and Das, M.K. (2007), "Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids", Int. J. Heat Mass Transf., 50(9-10), 2002-2018. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034
  74. Turkyilmazoglu, M. (2017), "Mixed convection flow of magneto-hydrodynamic micropolar fluid due to a porous heated/cooled deformable plate: exact solutions", Int. J. Heat Mass Transf., 106, 127-134. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.056
  75. Ullah, A., Shah, Z., Kumam, P., Ayaz, M., Islam, S. and Jameel, M. (2019), "Viscoelastic MHD nanofluid thin film flow over an unsteady vertical stretching sheet with entropy generation", Processes, 7(5), 262. https://doi.org/10.3390/pr7050262
  76. Waqas, H., Khan, S.U., Imran, M. and Bhatti, M.M. (2019), "Thermally developed Falkner-Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: Buongiorno's nanofluid model", Physica Scripta, 94(11), 115304. https://doi.org/10.1088/1402-4896/ab2ddc
  77. Williamson, R.V. (1929), "The flow of pseudoplastic materials", Ind. Eng. Chem., 21(11), 1108-1111. https://doi.org/10.1021/ie50239a035
  78. Xun, S., Zhao, J., Zheng, L. and Zhang, X. (2017), "Bioconvection in rotating system immersed in nanofluid with temperature dependent viscosity and thermal conductivity", Int. J. Heat Mass Transf., 111, 1001-1006. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.074
  79. Yang, S., Zhang, Y., Sha, Z., Huang, Z., Wang, H., Wang, F. and Li, J. (2022), "Deterministic manipulation of heat flow via three-dimensional-printed thermal meta-materials for multiple protection of critical components", ACS Appl. Mater. Interf., 14(34), 39354-39363. doi: 10.1021/acsami.2c09602
  80. Yang, W., Jiang, X., Tian, X., Hou, H. and Zhao, Y. (2023), "Phase-field simulation of nano-α' precipitates under irradiation and dislocations", J. Mater. Res. Technol., 22, 1307-1321. https://doi.org/10.1016/j.jmrt.2022.11.165
  81. Zangooee, M.R., Hosseinzadeh, K. and Ganji, D.D. (2019), "Hydrothermal analysis of MHD nanofluid (TiO2-GO) flow between two radiative stretchable rotating disks using AGM", Case Stud. Therm. Eng., 14, 100460. https://doi.org/10.1016/j.csite.2019.100460
  82. Zhang, G., Yang, Z., Li, X., Deng, S., Liu, Y., Zhou, H., Peng, M., Fu, Z., Chen, R., Meng, D., Zhong, L., Zhou, Q. and Wei, S. (2024), "Gamma-ray irradiation induced dielectric loss of SiO2/Si heterostructures in through-silicon vias (TSVs) by forming border traps", ACS Appl. Electr. Mater., 6(2), 1339-1346. https://doi.org/10.1021/acsaelm.3c01646
  83. Zhu, Q., Chen, J., Gou, G., Chen, H. and Li, P. (2017), "Ameliorated longitudinal critically refracted-Attenuation velocity method for welding residual stress measurement", J. Mater. Proc. Technol. 246, 267-275. https://doi.org/10.1016/j.jmatprotec.2017.03.022
  84. Zhu, S., Li, X., Bian, Y., Dai, N., Yong, J., Hu, Y., Hu, Y, Li, J., Wu, D. and Chu, J. (2023), "Inclination-enabled generalized microfluid rectifiers via anisotropic slippery hollow tracks", Adv. Mater. Technol., 8(16), 2300267. https://doi.org/10.1002/admt.202300267
  85. Zuhra, S., Khan, N.S. and Islam, S. (2018), "Magnetohydrodynamic second-grade nanofluid flow containing nanoparticles and gyrotactic microorganisms", Comput. Appl. Math., 37(5), 6332-6358. https://doi.org/10.1007/s40314-018-0683-6