참고문헌
- Akavci, S.S. (2014), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation" Compos. Struct., 108, 667-676. https://doi.org/10.1016/j.compstruct.2013.10.019
- Alibeigloo, A. and Emtehani, A. (2015), "Static and free vibration analyses of carbon nanotube-reinforced composite plate using differential quadrature method", Meccanica, 50(1), 61-76. https://doi.org/10.1007/s11012-014-0050-7
- Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahabodini, A. (2015), "Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy", Physica E, 69, 294-305. https://doi.org/10.1016/j.physe.2015.01.011
- Ansari, R., Torabi, J. and Hosein Shakouri, A. (2017), "Vibration analysis of functionally graded carbon nanotube-reinforced composite elliptical plates using a numerical strategy", Aerosp. Sci. Technol., 60, 152-161. https://doi.org/10.1016/j.ast.2016.11.004
- Barati, M.R. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235
- Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D Nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., 7(4), 277-292. https://doi.org/10.12989/anr.2019.7.4.277
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Boley, B.A. and Weiner, J.H. (1960), Theory of Thermal Stresses, John Wiley and Sons, Ltd.
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191. https://doi.org/10.12989/anr.2019.7.3.191
- Cadek, M., Coleman, J.N., Barron, V., Hedicke, K. and Blau, W.J. (2002), "Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites", App. Phys. Lett., 81(27), 5123-5125. https://doi.org/10.1063/1.1533118
- Calim, F.F. (2003), "Dynamic analysis of viscoelastic, anisotropic curved spatial rod systems", Ph. D. Dissertation, Cukurova University, Adana, Turkey. (In Turkish)
- Calim, F.F. (2016), "Dynamic response of curved Timoshenko beams resting on viscoelastic foundation", Struct. Eng. Mech., 59(4), 761-774. https://doi.org/10.12989/sem.2016.59.4.761
- Calim, F.F. (2020), "Vibration analysis of functionally graded Timoshenko beams on Winkler-Pasternak elastic foundation", Iran. J. Sci. Technol. Trans. Civ. Eng., 44(3), 901-920. https://doi.org/10.1007/s40996-019-00283-x
- Calim, F.F. and Cuma, Y.C. (2022), "Vibration analysis of nonuniform hyperboloidal and barrel helices made of functionally graded material", Mech. Based Des. Struct., 50(11), 3781-3795. https://doi.org/10.1080/15397734.2020.1822181
- Calim, F.F. and Cuma, Y.C. (2023), "Forced vibration analysis of viscoelastic helical rods with varying cross-section and functionally graded material", Mech. Based Des. Struct., 51(7), 3620-3631. https://doi.org/10.1080/15397734.2021.1931307
- Calim, F.F. and O zbey, M.B. (2024), "Damped response of porous functionally graded viscoelastic cylindrical shells", Mech. Based Des. Struct., 1-20. https://doi.org/10.1080/15397734.2023.2242482
- Cuma, Y.C. and Calim, F.F. (2021a), "Free vibration analysis of functionally graded cylindrical helices with variable cross-section", J. Sound Vib., 494, 115856. https://doi.org/10.1016/j.jsv.2020.115856
- Cuma, Y.C. and Calim, F.F. (2021b), "Transient response of functionally graded non-uniform cylindrical helical rods", Steel Compos. Struct., 40(4), 571-580. https://doi.org/10.12989/scs.2021.40.4.571
- Cuma, Y.C. and Calim, F.F. (2022), "Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area", Mech. TimeDepend. Mater., 26(4), 923-937. https://doi.org/10.1007/s11043-021-09520-1
- Cuma, Y.C., O zbey, M.B. and Calim, F.F. (2024), "Vibration and damping analysis of functionally graded shells", Mech. Time-Depend. Mater., 1-24. https://doi.org/10.1007/s11043-023-09621-z
- Dang, X.H., Nguyen, V.L., Tran, M.T. and Nguyen Thi, B.P. (2022), "Free vibration characteristics of rotating functionally graded porous circular cylindrical shells with different boundary conditions", IJST-T Mech. Eng., 46(1), 167-183. https://doi.org/10.1007/s40997-020-00413-1
- Duc, N.D. and Quan, T.Q. (2014), "Transient responses of functionally graded double curved shallow shells with temperature-dependent material properties in thermal environment", Eur. J. Mech. A, Solids, 47, 101-123. https://doi.org/10.1016/j.euromechsol.2014.03.002
- Durbin, F. (1974), "Numerical inversion of laplace transforms: an efficient improvement to Dubner and Abate's method", Comput. J., 17(4), 371-376. https://doi.org/10.1093/comjnl/17.4.371
- Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24(10), 820-829. https://doi.org/10.1080/15376494.2016.1196786
- Ebrahimi, F. and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment" Adv. Nano Res., 5(2), 69. https://doi.org/10.12989/anr.2017.5.2.069
- Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res, 7(2), 109. https://doi.org/10.12989/anr.2019.7.2.109
- Eratli, N., Argeso, H., Calim, F.F., Temel, B. and Omurtag, M.H. (2014), "Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM," J. Sound Vib. 333, 3671-3690. https://doi.org/10.1016/j.jsv.2014.03.017
- Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2020), "Forced vibrations of multi-phase crystalline porous shells based on strain gradient elasticity and pulse load effects", J. Vib. Eng. Technol., 8(6), 925-933. https://doi.org/10.1007/s42417-020-00203-8
- Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Nolte, M.C.M. and Schulte, K. (2006), "Fundamental aspects of nano-reinforced composites", Compos. Sci. Technol., 66(16), 3115-3125. https://doi.org/10.1016/j.compscitech.2005.01.014
- Ghasemi, A.R. and Mohandes, M. (2020), "Free vibration analysis of micro and nano fiber-metal laminates circular cylindrical shells based on modified couple stress theory", Mech. Adv. Mater. Struct., 27(1), 43-54. https://doi.org/10.1080/15376494.2018.1472337
- Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., 1099636217720373. https://doi.org/10.1177/1099636217720373
- Huang, B., Guo, Y., Wang, J., Du, J., Qian, Z., Ma, T. and Yi, L. (2016), "Bending and free vibration analyses of anti-symmetrically laminated carbon nanotube-reinforced functionally graded plates", J. Compos. Mater., 51(22), 3111-3125. https://doi.org/10.1177/0021998316685165
- Khosravi, F., Simyari, M., Hosseini, S.A. and Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9(3), 157. https://doi.org/10.12989/anr.2020.9.3.157
- Khosravi, S., Arvin, H. and Kiani, Y. (2019), "Interactive thermal and inertial buckling of rotating temperature-dependent FGCNT reinforced composite beams", Compos. Part B Eng., 175, 107178. https://doi.org/10.1016/j.compositesb.2019.107178
- Kiani, Y. (2017), "Analysis of FG-CNT reinforced composite conical panel subjected to moving load using Ritz method", Thin Wall. Struct., 119, 47-57. https://doi.org/10.1016/j.tws.2017.05.031
- Kiani, Y. (2017), "Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading", Acta. Mech., 228, 1303-1319. https://doi.org/10.1007/s00707-016-1781-4
- Kiani, Y. (2017), "Dynamics of FG-CNT reinforced composite cylindrical panel subjected to moving load", Thin Wall. Struct., 111, 48-57. https://doi.org/10.1016/j.tws.2016.11.011
- Kiani, Y. (2017), "Free vibration of FG-CNT reinforced composite spherical shell panels using Gram-Schmidt shape functions", Compos. Struct., 159, 368-381. https://doi.org/10.1016/j.compstruct.2016.09.079
- Kim, Y.W. (2015), "Free vibration analysis of FGM cylindrical shell partially resting on Pasternak elastic foundation with an oblique edge", Compos. Part B Eng., 70, 263-276. https://doi.org/10.1016/j.compositesb.2014.11.024
- Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003
- Lin, F. and Xiang, Y. (2014), "Vibration analysis of carbon nanotube reinforced composite plates", Appl. Mech. Mater., 553, 681-686. https://doi.org/10.4028/www.scientific.net/AMM.553.681
- Liu, Y., Qin, Z. and Chu, F. (2021), "Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate", Nonlinear Dyn., 104(2), 1007-1021. https://doi.org/10.1007/s11071-021-06358-7
- Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mater. Struct., 23(11), 1343-1359. https://doi.org/10.1080/15376494.2015.1085606
- Malekzadeh, P. and Heydarpour, Y. (2015), "Mixed Navier-layerwise differential quadrature three-dimensional static and free vibration analysis of functionally graded carbon nanotube reinforced composite laminated plates", Meccanica, 50(1), 143-167. https://doi.org/10.1007/s11012-014-0061-4
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2022), "Geometrically nonlinear vibration analysis of eccentrically stiffened porous functionally graded annular spherical shell segments", Mech. Based Des. Struct., 50(6), 2206-2220. https://doi.org/10.1080/15397734.2020.1771729
- Mirzaei, M., Kiani, Y. (2015), "Snap-through phenomenon in a thermally postbuckled temperature dependent sandwich beam with FG-CNTRC face sheets", Compos. Struct., 134, 1004-1013. https://doi.org/10.1016/j.compstruct.2015.09.003
- Mirzaei, M., Kiani, Y. (2016), "Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout", Beilstein J. Nanotechnol., 7, 511-523. https://doi.org/10.3762/bjnano.7.45
- Narayanan, G. V. (1980), "Numerical operational methods in structural dynamics", University of Minnesota, U.S.A.
- Phung-Van, P., Abdel-Wahab, M., Liew, K.M., Bordas, S.P.A. and Nguyen-Xuan, H. (2015), "Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory", Compos. Struct., 123, 137-149. https://doi.org/10.1016/j.compstruct.2014.12.021
- Rachid, A., Ouinas, D., Lousdad, A., Zaoui, F.Z., Achour, B., Gasmi, H., Butt, T.A. and Tounsi, A. (2022), "Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs", Thin Wall. Struct., 172, 108783. https://doi.org/10.1016/j.tws.2021.108783
- Singha, T.D., Bandyopadhyay, T. and Karmakar, A. (2022), "A numerical solution for thermal free vibration analysis of rotating pre-twisted FG-GRC cylindrical shell panel", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2022.2067924
- Soleimani-Javid, Z., Arshid, E., Khorasani, M., Amir, S. and Tounsi, A. (2021), "Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions", Adv. Nano Res., 10(5), 449-460. https://doi.org/10.12989/anr.2021.10.5.449
- Temel, B., Calim, F.F. and Tutuncu, N. (2004), "Quasi-static and dynamic response of viscoelastic helical rods", J. Sound Vib., 271(3), 921-935. https://doi.org/10.1016/S0022-460X(03)00760-0
- Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
- Truong-Thi, T., Vo-Duy, T., Ho-Huu, V. and Nguyen-Thoi, T. (2020), "Static and free vibration analyses of functionally graded carbon nanotube reinforced composite plates using CSDSG3", Int. J. Comput. Methods, 17(03), 1850133. https://doi.org/10.1142/S021987621850133
- Turker, H.T., Cuma, Y.C. and Calim, F.F. (2023), "An efficient approach for free vibration behaviour of non-uniform and nonhomogeneous helices", IJST-T Civ. Eng., 47(4), 1959-1970. https://doi.org/10.1007/s40996-023-01075-0
- Van Vinh, P. and Tounsi, A. (2022), "Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters", Thin Wall. Struct., 174, 109084. https://doi.org/10.1016/j.tws.2022.109084
- Wang, M., Li, Z.M. and Qiao, P. (2016), "Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates", Compos. Struct., 144, 33-43. https://doi.org/10.1016/j.compstruct.2016.02.025
- Wang, M., Li, Z.M. and Qiao, P. (2018), "Vibration analysis of sandwich plates with carbon nanotube-reinforced composite face-sheets", Compos. Struct., 200, 799-809. https://doi.org/10.1016/j.compstruct.2018.05.058
- Wang, Q., Cui, X., Qin, B. and Liang, Q. (2017), "Vibration analysis of the functionally graded carbon nanotube reinforced composite shallow shells with arbitrary boundary conditions", Compos. Struct., 182, 364-379. https://doi.org/10.1016/j.compstruct.2017.09.043
- Zannon, M., Abu-Rqayiq, A. and Al-bdour, A. (2020), "Free vibration frequency of thick FGM spherical shells based on a third-order shear deformation theory", Eur. J. Pure Appl. Math., 13(4), 766-778. https://doi.org/10.29020/nybg.ejpam.v13i4.3826
- Zhang, Y., Guo, Z., Gong, Y., Shi, J., El Ouni, M.H. and Alhosny, F. (2023), "Elastic buckling performance of FG porous plates embedded between CNTRC piezoelectric patches based on a novel quasi 3D-HSDT in hygrothermal environment", Adv. Nano Res., 15(2), 175-189. https://doi.org/10.12989/anr.2023.15.2.175
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010