DOI QR코드

DOI QR Code

Free and forced vibration analysis of FG-CNTRC viscoelastic plate using high shear deformation theory

  • Mehmet Bugra Ozbey (Department of Civil Engineering, Adana Alparslan Turkes Science and Technology University) ;
  • Yavuz Cetin Cuma (Department of Civil Engineering, Adana Alparslan Turkes Science and Technology University) ;
  • Ibrahim Ozgur Deneme (Department of Civil Engineering, Aksaray University) ;
  • Faruk Firat Calim (Department of Civil Engineering, Adana Alparslan Turkes Science and Technology University)
  • Received : 2024.01.06
  • Accepted : 2024.02.29
  • Published : 2024.04.25

Abstract

This paper investigates the dynamic behavior of a simply supported viscoelastic plate made of functionally graded carbon nanotube reinforced composite under dynamic loading. Carbon nanotubes are distributed in 5 different shapes: U, V, A, O and X, depending on the shape they form through the thickness of the plate. The displacement fields are derived in the Laplace domain using a higher-order shear deformation theory. Equations of motion are obtained through the application of the energy method and Hamilton's principle. The resulting equations of motion are solved using Navier's method. Transforming the Laplace domain displacements into the time domain involves Durbin's modified inverse Laplace transform. To validate the accuracy of the developed algorithm, a free vibration analysis is conducted for simply supported plate made of functionally graded carbon nanotube reinforced composite and compared against existing literature. Subsequently, a parametric forced vibration analysis considers the influence of various parameters: volume fractions of carbon nanotubes, their distributions, and ratios of instantaneous value to retardation time in the relaxation function, using a linear standard viscoelastic model. In the forced vibration analysis, the dynamic distributed load applied to functionally graded carbon nanotube reinforced composite viscoelastic plate is obtained in terms of double trigonometric series. The study culminates in an examination of maximum displacement, exploring the effects of different carbon nanotube distributions, volume fractions, and ratios of instantaneous value to retardation times in the relaxation function on the amplitudes of maximum displacements.

Keywords

References

  1. Akavci, S.S. (2014), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation" Compos. Struct., 108, 667-676. https://doi.org/10.1016/j.compstruct.2013.10.019
  2. Alibeigloo, A. and Emtehani, A. (2015), "Static and free vibration analyses of carbon nanotube-reinforced composite plate using differential quadrature method", Meccanica, 50(1), 61-76. https://doi.org/10.1007/s11012-014-0050-7
  3. Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahabodini, A. (2015), "Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy", Physica E, 69, 294-305. https://doi.org/10.1016/j.physe.2015.01.011
  4. Ansari, R., Torabi, J. and Hosein Shakouri, A. (2017), "Vibration analysis of functionally graded carbon nanotube-reinforced composite elliptical plates using a numerical strategy", Aerosp. Sci. Technol., 60, 152-161. https://doi.org/10.1016/j.ast.2016.11.004
  5. Barati, M.R. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235
  6. Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D Nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., 7(4), 277-292. https://doi.org/10.12989/anr.2019.7.4.277
  7. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  8. Boley, B.A. and Weiner, J.H. (1960), Theory of Thermal Stresses, John Wiley and Sons, Ltd.
  9. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191. https://doi.org/10.12989/anr.2019.7.3.191
  10. Cadek, M., Coleman, J.N., Barron, V., Hedicke, K. and Blau, W.J. (2002), "Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites", App. Phys. Lett., 81(27), 5123-5125. https://doi.org/10.1063/1.1533118
  11. Calim, F.F. (2003), "Dynamic analysis of viscoelastic, anisotropic curved spatial rod systems", Ph. D. Dissertation, Cukurova University, Adana, Turkey. (In Turkish)
  12. Calim, F.F. (2016), "Dynamic response of curved Timoshenko beams resting on viscoelastic foundation", Struct. Eng. Mech., 59(4), 761-774. https://doi.org/10.12989/sem.2016.59.4.761
  13. Calim, F.F. (2020), "Vibration analysis of functionally graded Timoshenko beams on Winkler-Pasternak elastic foundation", Iran. J. Sci. Technol. Trans. Civ. Eng., 44(3), 901-920. https://doi.org/10.1007/s40996-019-00283-x
  14. Calim, F.F. and Cuma, Y.C. (2022), "Vibration analysis of nonuniform hyperboloidal and barrel helices made of functionally graded material", Mech. Based Des. Struct., 50(11), 3781-3795. https://doi.org/10.1080/15397734.2020.1822181
  15. Calim, F.F. and Cuma, Y.C. (2023), "Forced vibration analysis of viscoelastic helical rods with varying cross-section and functionally graded material", Mech. Based Des. Struct., 51(7), 3620-3631. https://doi.org/10.1080/15397734.2021.1931307
  16. Calim, F.F. and O zbey, M.B. (2024), "Damped response of porous functionally graded viscoelastic cylindrical shells", Mech. Based Des. Struct., 1-20. https://doi.org/10.1080/15397734.2023.2242482
  17. Cuma, Y.C. and Calim, F.F. (2021a), "Free vibration analysis of functionally graded cylindrical helices with variable cross-section", J. Sound Vib., 494, 115856. https://doi.org/10.1016/j.jsv.2020.115856
  18. Cuma, Y.C. and Calim, F.F. (2021b), "Transient response of functionally graded non-uniform cylindrical helical rods", Steel Compos. Struct., 40(4), 571-580. https://doi.org/10.12989/scs.2021.40.4.571
  19. Cuma, Y.C. and Calim, F.F. (2022), "Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area", Mech. TimeDepend. Mater., 26(4), 923-937. https://doi.org/10.1007/s11043-021-09520-1
  20. Cuma, Y.C., O zbey, M.B. and Calim, F.F. (2024), "Vibration and damping analysis of functionally graded shells", Mech. Time-Depend. Mater., 1-24. https://doi.org/10.1007/s11043-023-09621-z
  21. Dang, X.H., Nguyen, V.L., Tran, M.T. and Nguyen Thi, B.P. (2022), "Free vibration characteristics of rotating functionally graded porous circular cylindrical shells with different boundary conditions", IJST-T Mech. Eng., 46(1), 167-183. https://doi.org/10.1007/s40997-020-00413-1
  22. Duc, N.D. and Quan, T.Q. (2014), "Transient responses of functionally graded double curved shallow shells with temperature-dependent material properties in thermal environment", Eur. J. Mech. A, Solids, 47, 101-123. https://doi.org/10.1016/j.euromechsol.2014.03.002
  23. Durbin, F. (1974), "Numerical inversion of laplace transforms: an efficient improvement to Dubner and Abate's method", Comput. J., 17(4), 371-376. https://doi.org/10.1093/comjnl/17.4.371
  24. Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24(10), 820-829. https://doi.org/10.1080/15376494.2016.1196786
  25. Ebrahimi, F. and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment" Adv. Nano Res., 5(2), 69. https://doi.org/10.12989/anr.2017.5.2.069
  26. Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res, 7(2), 109. https://doi.org/10.12989/anr.2019.7.2.109
  27. Eratli, N., Argeso, H., Calim, F.F., Temel, B. and Omurtag, M.H. (2014), "Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM," J. Sound Vib. 333, 3671-3690. https://doi.org/10.1016/j.jsv.2014.03.017
  28. Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2020), "Forced vibrations of multi-phase crystalline porous shells based on strain gradient elasticity and pulse load effects", J. Vib. Eng. Technol., 8(6), 925-933. https://doi.org/10.1007/s42417-020-00203-8
  29. Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Nolte, M.C.M. and Schulte, K. (2006), "Fundamental aspects of nano-reinforced composites", Compos. Sci. Technol., 66(16), 3115-3125. https://doi.org/10.1016/j.compscitech.2005.01.014
  30. Ghasemi, A.R. and Mohandes, M. (2020), "Free vibration analysis of micro and nano fiber-metal laminates circular cylindrical shells based on modified couple stress theory", Mech. Adv. Mater. Struct., 27(1), 43-54. https://doi.org/10.1080/15376494.2018.1472337
  31. Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., 1099636217720373. https://doi.org/10.1177/1099636217720373
  32. Huang, B., Guo, Y., Wang, J., Du, J., Qian, Z., Ma, T. and Yi, L. (2016), "Bending and free vibration analyses of anti-symmetrically laminated carbon nanotube-reinforced functionally graded plates", J. Compos. Mater., 51(22), 3111-3125. https://doi.org/10.1177/0021998316685165
  33. Khosravi, F., Simyari, M., Hosseini, S.A. and Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9(3), 157. https://doi.org/10.12989/anr.2020.9.3.157
  34. Khosravi, S., Arvin, H. and Kiani, Y. (2019), "Interactive thermal and inertial buckling of rotating temperature-dependent FGCNT reinforced composite beams", Compos. Part B Eng., 175, 107178. https://doi.org/10.1016/j.compositesb.2019.107178
  35. Kiani, Y. (2017), "Analysis of FG-CNT reinforced composite conical panel subjected to moving load using Ritz method", Thin Wall. Struct., 119, 47-57. https://doi.org/10.1016/j.tws.2017.05.031
  36. Kiani, Y. (2017), "Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading", Acta. Mech., 228, 1303-1319. https://doi.org/10.1007/s00707-016-1781-4
  37. Kiani, Y. (2017), "Dynamics of FG-CNT reinforced composite cylindrical panel subjected to moving load", Thin Wall. Struct., 111, 48-57. https://doi.org/10.1016/j.tws.2016.11.011
  38. Kiani, Y. (2017), "Free vibration of FG-CNT reinforced composite spherical shell panels using Gram-Schmidt shape functions", Compos. Struct., 159, 368-381. https://doi.org/10.1016/j.compstruct.2016.09.079
  39. Kim, Y.W. (2015), "Free vibration analysis of FGM cylindrical shell partially resting on Pasternak elastic foundation with an oblique edge", Compos. Part B Eng., 70, 263-276. https://doi.org/10.1016/j.compositesb.2014.11.024
  40. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003
  41. Lin, F. and Xiang, Y. (2014), "Vibration analysis of carbon nanotube reinforced composite plates", Appl. Mech. Mater., 553, 681-686. https://doi.org/10.4028/www.scientific.net/AMM.553.681
  42. Liu, Y., Qin, Z. and Chu, F. (2021), "Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate", Nonlinear Dyn., 104(2), 1007-1021. https://doi.org/10.1007/s11071-021-06358-7
  43. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mater. Struct., 23(11), 1343-1359. https://doi.org/10.1080/15376494.2015.1085606
  44. Malekzadeh, P. and Heydarpour, Y. (2015), "Mixed Navier-layerwise differential quadrature three-dimensional static and free vibration analysis of functionally graded carbon nanotube reinforced composite laminated plates", Meccanica, 50(1), 143-167. https://doi.org/10.1007/s11012-014-0061-4
  45. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2022), "Geometrically nonlinear vibration analysis of eccentrically stiffened porous functionally graded annular spherical shell segments", Mech. Based Des. Struct., 50(6), 2206-2220. https://doi.org/10.1080/15397734.2020.1771729
  46. Mirzaei, M., Kiani, Y. (2015), "Snap-through phenomenon in a thermally postbuckled temperature dependent sandwich beam with FG-CNTRC face sheets", Compos. Struct., 134, 1004-1013. https://doi.org/10.1016/j.compstruct.2015.09.003
  47. Mirzaei, M., Kiani, Y. (2016), "Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout", Beilstein J. Nanotechnol., 7, 511-523. https://doi.org/10.3762/bjnano.7.45
  48. Narayanan, G. V. (1980), "Numerical operational methods in structural dynamics", University of Minnesota, U.S.A.
  49. Phung-Van, P., Abdel-Wahab, M., Liew, K.M., Bordas, S.P.A. and Nguyen-Xuan, H. (2015), "Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory", Compos. Struct., 123, 137-149. https://doi.org/10.1016/j.compstruct.2014.12.021
  50. Rachid, A., Ouinas, D., Lousdad, A., Zaoui, F.Z., Achour, B., Gasmi, H., Butt, T.A. and Tounsi, A. (2022), "Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs", Thin Wall. Struct., 172, 108783. https://doi.org/10.1016/j.tws.2021.108783
  51. Singha, T.D., Bandyopadhyay, T. and Karmakar, A. (2022), "A numerical solution for thermal free vibration analysis of rotating pre-twisted FG-GRC cylindrical shell panel", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2022.2067924
  52. Soleimani-Javid, Z., Arshid, E., Khorasani, M., Amir, S. and Tounsi, A. (2021), "Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions", Adv. Nano Res., 10(5), 449-460. https://doi.org/10.12989/anr.2021.10.5.449
  53. Temel, B., Calim, F.F. and Tutuncu, N. (2004), "Quasi-static and dynamic response of viscoelastic helical rods", J. Sound Vib., 271(3), 921-935. https://doi.org/10.1016/S0022-460X(03)00760-0
  54. Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
  55. Truong-Thi, T., Vo-Duy, T., Ho-Huu, V. and Nguyen-Thoi, T. (2020), "Static and free vibration analyses of functionally graded carbon nanotube reinforced composite plates using CSDSG3", Int. J. Comput. Methods, 17(03), 1850133. https://doi.org/10.1142/S021987621850133
  56. Turker, H.T., Cuma, Y.C. and Calim, F.F. (2023), "An efficient approach for free vibration behaviour of non-uniform and nonhomogeneous helices", IJST-T Civ. Eng., 47(4), 1959-1970. https://doi.org/10.1007/s40996-023-01075-0
  57. Van Vinh, P. and Tounsi, A. (2022), "Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters", Thin Wall. Struct., 174, 109084. https://doi.org/10.1016/j.tws.2022.109084
  58. Wang, M., Li, Z.M. and Qiao, P. (2016), "Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates", Compos. Struct., 144, 33-43. https://doi.org/10.1016/j.compstruct.2016.02.025
  59. Wang, M., Li, Z.M. and Qiao, P. (2018), "Vibration analysis of sandwich plates with carbon nanotube-reinforced composite face-sheets", Compos. Struct., 200, 799-809. https://doi.org/10.1016/j.compstruct.2018.05.058
  60. Wang, Q., Cui, X., Qin, B. and Liang, Q. (2017), "Vibration analysis of the functionally graded carbon nanotube reinforced composite shallow shells with arbitrary boundary conditions", Compos. Struct., 182, 364-379. https://doi.org/10.1016/j.compstruct.2017.09.043
  61. Zannon, M., Abu-Rqayiq, A. and Al-bdour, A. (2020), "Free vibration frequency of thick FGM spherical shells based on a third-order shear deformation theory", Eur. J. Pure Appl. Math., 13(4), 766-778. https://doi.org/10.29020/nybg.ejpam.v13i4.3826
  62. Zhang, Y., Guo, Z., Gong, Y., Shi, J., El Ouni, M.H. and Alhosny, F. (2023), "Elastic buckling performance of FG porous plates embedded between CNTRC piezoelectric patches based on a novel quasi 3D-HSDT in hygrothermal environment", Adv. Nano Res., 15(2), 175-189. https://doi.org/10.12989/anr.2023.15.2.175
  63. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010