Acknowledgement
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University (KKU) for funding this work through the Research Group Program Under the Grant. code RGP2/262/44.
References
- Chen, T. and Guestrin, C. (2016), "XGBoost", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785
- Chou, J.S. and Pham, A.D. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Constr. Build. Mater., 49, 554-563. https://doi.org/10.1016/j.conbuildmat.2013.08.078
- Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learn., 20(3), 273-297. https://doi.org/10.1007/BF00994018
- Cover, T. and Hart, P. (1967), "Nearest neighbor pattern classification", IEEE T. Inform. Theor., 13(1), 21-27. https://doi.org/10.1109/TIT.1967.1053964
- Dehestani, A., Kazemi, F., Abdi, R. and Nitka, M. (2022), "Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various machine learning techniques. Eng. Fract. Mech., 276, 108914. https://doi.org/10.1016/j.engfracmech.2022.108914
- Ding, X., Li, C., Xu, Y., Li, F. and Zhao, S. (2016), "Experimental study on long-term compressive strength of concrete with manufactured sand", Constr. Build. Mater., 108, 67-73. https://doi.org/10.1016/j.conbuildmat.2016.01.028
- Ho, T.K. (1998), "The random subspace method for constructing decision forests", IEEE T. Pattern Anal. Mach. Intell., 20(8), 832-844. https://doi.org/10.1109/34.709601
- Hou, S., Qiao, L. and Xing, L. (2022), "Artificial neural fuzzy system and monitoring the process via IoT for optimization synthesis of nano-size polymeric chains", Adv. Nano Res., 14(4), 375-386. https://doi.org/https://doi.org/10.12989/anr.2022.12.4.375
- Jin, R. and Agrawal, G. (2003), "Communication and Memory Efficient Parallel Decision Tree Construction", Proceedings of the 2003 SIAM International Conference on Data Mining, 119-129. https://doi.org/10.1137/1.9781611972733.11
- Kaloop, M. R., Kumar, D., Samui, P., Hu, J. W. and Kim, D. (2020), "Compressive strength prediction of high-performance concrete using gradient tree boosting machine", Constr. Build. Mater., 264, 120198. https://doi.org/10.1016/j.conbuildmat.2020.120198
- Kazemi, F., Asgarkhani, N. and Jankowski, R. (2023), "Machine learning-based seismic response and performance assessment of reinforced concrete buildings", Arch. Civil Mech. Eng., 23(2), 94. https://doi.org/10.1007/s43452-023-00631-9
- Aretz, K., Bartram, S. M. and Pope, P. F. (2011), "Asymmetric loss functions and the rationality of expected stock returns", Int. J. Forecast., 27(2), 413-437. https://doi.org/10.1016/j.ijforecast.2009.10.008
- Li, B., Ke, G. and Zhou, M. (2011), "Influence of manufactured sand characteristics on strength and abrasion resistance of pavement cement concrete", Constr. Build. Mater., 25(10), 3849-3853. https://doi.org/10.1016/j.conbuildmat.2011.04.004
- Ling, H., Qian, C., Kang, W., Liang, C. and Chen, H. (2019), "Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment", Constr. Build. Mater., 206, 355-363. https://doi.org/10.1016/j.conbuildmat.2019.02.071
- Liu, Q., Peng, K., Zeng, J., Marzouki, R., Majdi, A., Jan, A., Salameh, A. A. and Assilzadeh, H. (2022), "Effects of mining activities on Nano-soil management using artificial intelligence models of ANN and ELM", Adv. Nano Res., 12(6), 549-566. https://doi.org/https://doi.org/10.12989/anr.2022.12.6.549
- Mamdani, M. (1974), "The ideology of population control. Concern. Demograph., 4(2), 13-22. PMID: 12307029.
- Moayedi, Kalantar, Foong, Tien Bui and Motevalli. (2019), "Application of three metaheuristic techniques in simulation of concrete slump", Appl. Sci., 9(20), 4340. https://doi.org/10.3390/app9204340
- Pan, J., Zhong, W., Wang, J. and Zhang, C. (2022), "Size effect on dynamic splitting tensile strength of concrete: Mesoscale modeling", Cement Concr. Compos., 128, 104435. https://doi.org/10.1016/j.cemconcomp.2022.104435
- Quinlan, J.R. (1986), "Induction of decision trees", Mach. Learn., 1(1), 81-106. https://doi.org/10.1007/BF00116251
- Rasmussen, C.E. (2004), "Gaussian processes in machine learning", Adv. Lecture. Mach. Learn., 63-71. https://doi.org/10.1007/978-3-540-28650-9_4
- Ren, W., Wu, X. and Cai, R. (2022), "A hybrid artificial intelligence and IOT for investigation dynamic modeling of nano-system", Adv. Nano Res., 13(2), 165-174. https://doi.org/https://doi.org/10.12989/anr.2022.13.2.165
- Tinoco, J., Alberto, A., da Venda, P., Gomes Correia, A. and Lemos, L. (2020), "A novel approach based on soft computing techniques for unconfined compression strength prediction of soil cement mixtures'', Neural Comput. Appl., 32(13), 8985-8991. https://doi.org/10.1007/s00521-019-04399-z
- Walczak, S. and Cerpa, N. (2003), "Artificial neural networks", Encyclopedia Phys. Sci. Technol., 65(6), 631-645. https://doi.org/10.1016/B0-12-227410-5/00837-1
- Yaseen, Z.M., Deo, R C., Hilal, A., Abd, A.M., Bueno, L.C., Salcedo-Sanz, S. and Nehdi, M.L. (2018), "Predicting compressive strength of lightweight foamed concrete using extreme learning machine model", Adv. Eng. Softw., 115, 112-125. https://doi.org/10.1016/j.advengsoft.2017.09.004
- Zhang, J., Li, D. and Wang, Y. (2020), "Predicting mechanical properties of manufactured-sand concrete using tree-based machine learning models", J. Clean. Prod., 258, 120665. https://doi.org/10.1016/j.jclepro.2020.120665
- Zhao, S., Ding, X., Zhao, M., Li, C. and Pei, S. (2017), "Experimental study on tensile strength development of concrete with manufactured sand", Constr. Build. Mater., 138, 247-253. https://doi.org/10.1016/j.conbuildmat.2017.01.093
- Zhou, X., Wang, P., Al-Dhaifallah, M., Rawa, M. and Khadimallah, M. A. (2022), "A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet", Adv. Nano Res., 12(1), 81-99. https://doi.org/https://doi.org/10.12989/anr.2022.12.1.081
- Zhou, X., Liu, X., Jiang, J., Gao, X. and Ji, X. (2021, July), "Asymmetric loss functions for learning with noisy labels", Proceedings of the International Conference on Machine Learning, 12846-12856. PMLR. https://doi.org/10.1016/j.ijforecast.2009.10.008