DOI QR코드

DOI QR Code

Sports balls made of nanocomposite: investigating how soccer balls motion and impact

  • Ling Yang (School of Physical Education, Hunan University of Humanities, Science and Technology) ;
  • Zhen Bai (Sports Reform and Development Research Center, Institute of physical education, Henan University)
  • 투고 : 2022.08.09
  • 심사 : 2024.02.28
  • 발행 : 2024.04.25

초록

The incorporation of nanoplatelets in composite and polymeric materials represents a recent and innovative approach, holding substantial promise for diverse property enhancements. This study focuses on the application of nanocomposites in the production of sports equipment, particularly soccer balls, aiming to bridge the gap between theoretical advancements and practical implications. Addressing the longstanding challenge of suboptimal interaction between carbon nanofillers and epoxy resin in epoxy composites, this research pioneers inventive solutions. Furthermore, the investigation extends into unexplored territory, examining the integration of glass fiber/epoxy composites with nanoparticles. The incorporation of nanomaterials, specifically expanded graphite and graphene, at a concentration of 25.0% by weight in both the epoxy structure and the composite with glass fibers demonstrates a marked increase in impact resistance compared to their nanomaterial-free counterparts. The research transcends laboratory experiments to explore the practical applications of nanocomposites in the design and production of sports equipment, with a particular emphasis on soccer balls. Analytical techniques such as infrared spectroscopy and scanning electron microscopy are employed to scrutinize the surface chemical structure and morphology of the epoxy nanocomposites. Additionally, an in-depth examination of the thermal, mechanical, viscoelastic, and conductive properties of these materials is conducted. Noteworthy findings include the efficacy of surface modification of carbon nanotubes in preventing accumulation and enhancing their distribution within the epoxy matrix. This optimization results in improved interfacial interactions, heightened thermal stability, superior mechanical properties, and enhanced electrical conductivity in the nanocomposite.

키워드

참고문헌

  1. Agasti, N., Gautam, V., Priyanka, Manju, Pandey, N., Genwa, M., Meena, P.L., Tandon, S. and Samantaray, R. (2022), "Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review", Appl. Surf. Sci. Adv., 10, 100270. https://doi.org/10.1016/j.apsadv.2022.100270. 
  2. Aguilar-Ferrer, D., Szewczyk, J. and Coy, E. (2022), "Recent developments in polydopamine-based photocatalytic nanocomposites for energy production: Physico-chemical properties and perspectives", Catal. Today, 397-399, 316-349. https://doi.org/10.1016/j.cattod.2021.08.016. 
  3. Ajayan, P.M. and Zhou, O.Z. (2001), Applications of Carbon Nanotubes, Springer Berlin Heidelberg, Berlin, Heidelberg.
  4. Ashfaq, A., Khursheed, N., Fatima, S., Anjum, Z. and Younis, K. (2022), "Application of nanotechnology in food packaging: Pros and Cons", J. Agric. Food Res., 7, 100270. https://doi.org/10.1016/j.jafr.2022.100270. 
  5. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A., 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5. 
  6. Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., Li, M.J. and Zou, Q. (2022), "webTWAS: A resource for disease candidate susceptibility genes identified by transcriptome-wide association study", Nucl. Acids Res., 50(D1), D1123-D1130. https://doi.org/10.1093/nar/gkab957. 
  7. Cao, Y., Niu, B., Wang, H. and Zhao, X. (2024), "Event-based adaptive resilient control for networked nonlinear systems against unknown deception attacks and actuator saturation", Int. J. Robust Nonlinear Control., Research Article. https://doi.org/10.1002/rnc.7231. 
  8. Cheng, Q., Ali, H.E. and Albaijan, I. (2023), "Optimization of the cross-section regarding the stability of nanostructures according to the dynamic analysis", Adv. Concr. Constr., 15(4), 215-228. https://doi.org/10.12989/acc.2023.15.4.215. 
  9. Cui, R., Jiang, K., Yuan, M., Cao, J., Li, L., Tang, Z. and Qin, Y. (2020), "Antimicrobial film based on polylactic acid and carbon nanotube for controlled cinnamaldehyde release", J. Mater. Res. Technol., 9(5), 10130-10138. https://doi.org/10.1016/j.jmrt.2020.07.016. 
  10. Dai, H. (2002), "Carbon nanotubes: Opportunities and challenges", Surf. Sci., 500(1), 218-241. https://doi.org/10.1016/S0039-6028(01)01558-8. 
  11. Dai, Y., Jiang, Z., Chen, K.Y., Zuo, D., Ali, H.E. and Albaijan, I. (2023), "Geometry impact on the stability behavior of cylindrical microstructures: Computer modeling and application for small-scale sport structures", Steel Compos. Struct., 48(4), 443. https://doi.org/10.12989/scs.2023.48.4.443. 
  12. Dresselhaus, M.S., Dresselhaus, G. and Saito, R. (1995), "Physics of carbon nanotubes", Carbon, 33(7), 883-891. https://doi.org/10.1016/0008-6223(95)00017-8. 
  13. Dzenis, Y. (2008), "Structural nanocomposites", Science, 319(5862), 419-420. https://doi.org/10.1126/science.1151434. 
  14. Ebbesen, T.W. (1994), "Carbon nanotubes", Ann. Rev. Mater. Sci., 24(1), 235-264. https://doi.org/10.1146/annurev.ms.24.080194.001315. 
  15. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499. 
  16. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141. 
  17. Fan, W., Zhang, Q. and Wang, Y. (2013), "Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion", Phys. Chem. Chem. Phys., 15(8), 2632-2649. https://doi.org/10.1039/C2CP43524A. 
  18. Fan, X., Wei, G., Lin, X., Wang, X., Si, Z., Zhang, X., Shao, Q., Mangin, S., Fullerton, E., Jiang, L. and Zhao, W. (2020), "Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation", Matter. 2(6), 1582-1593. https://doi.org/10.1016/j.matt.2020.04.001. 
  19. Feng, S., Du, X., Luo, J., Zhuang, Y., Wang, J. and Wan, Y. (2023), "A review on facilitated transport membranes based on π-complexation for carbon dioxide separation", Sep. Purif. Technol., 309 122972. https://doi.org/10.1016/j.seppur.2022.122972. 
  20. Fito, J., Kefeni, K.K. and Nkambule, T.T.I. (2022), "The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater", Sci. Total Environ., 829, 154648. https://doi.org/10.1016/j.scitotenv.2022.154648. 
  21. Fu, L., Li, J., Yang, J., Liu, Y., He, C. and Chen, Y. (2023), "Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport", Adv. Nano Res., 15(5), 441-449. https://doi.org/10.12989/anr.2023.15.5.441. 
  22. Gan, J., Li, F., Li, K., Li, E. and Li, B. (2023), "Dynamic failure of 3D printed negative-stiffness meta-sandwich structures under repeated impact loadings", Compos. Sci. Technol., 234, 109928. https://doi.org/10.1016/j.compscitech.2023.109928. 
  23. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527. 
  24. Ghadiri, M., Shafiei, N. and Alavi, H. (2017a), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770. 
  25. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016b), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5. 
  26. Ghadiri, M., Shafiei, N. and Babaei, R. (2017b), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/scs.2017.25.2.197. 
  27. Ghadiri, M., Shafiei, N. and Hossein Alavi, S. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337. 
  28. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016c), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8. 
  29. Guan, S. (2023), "Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise", Adv. Nano Res., 15(2), 155-163. https://doi.org/10.12989/anr.2023.15.2.155. 
  30. Haddon, R.C. (2002), "Carbon nanotubes", Accounts Chem. Res., 35(12), 997-997. https://doi.org/10.1021/ar020259h. 
  31. He, L. and Deng, Q. (2023), "Construction of sports engineering structures with high resistance to improve the quality of sports training", Struct. Eng. Mech., 86(2), 211-220. https://doi.org/10.12989/sem.2023.86.2.211. 
  32. Hua, Y., Li, F., Hu, N. and Fu, S.Y. (2022), "Frictional characteristics of graphene oxide-modified continuous glass fiber reinforced epoxy composite", Compos. Sci. Technol., 223, 109446. https://doi.org/10.1016/j.compscitech.2022.109446. 
  33. Huang, S., Zong, G., Zhao, N., Zhao, X. and Ahmad, A.M. (2024), "Performance recovery-based fuzzy robust control of networked nonlinear systems against actuator fault: A deferred actuator-switching method", Fuzzy Sets Syst., 480, 108858. https://doi.org/10.1016/j.fss.2024.108858. 
  34. Iijima, S. (2002), "Carbon nanotubes: Past, present, and future", Physica B, 323(1), 1-5. https://doi.org/10.1016/S0921-4526(02)00869-4. 
  35. Jia, S., Niu, X., Jia, F. and Mahmoudi, T. (2023), "Advantages and disadvantages of renewable energy-oil-environmental pollution-from the point of view of nanoscience", Adv. Concr. Constr., 16(1), 69-78. https://doi.org/10.12989/acc.2023.16.1.069. 
  36. Jiang, H., Xie, Y., Zhu, R., Luo, Y., Sheng, X., Xie, D. and Mei, Y. (2023), "Construction of polyphosphazene-functionalized Ti3C2TX with high efficient flame retardancy for epoxy and its synergetic mechanisms", Chem. Eng. J., 456, 141049. https://doi.org/10.1016/j.cej.2022.141049. 
  37. Jin, H., Zhang, B. and Duan, X. (2023), "Impact of nanocomposite material to counter injury in physical sport in the tennis racket", Adv. Nano Res., 14(5), 435-442. https://doi.org/10.12989/anr.2023.14.5.435. 
  38. Komarneni, S. (1992), "Feature article, Nanocomposites", J. Mater. Chem., 2(12), 1219-1230. https://doi.org/10.1039/JM9920201219. 
  39. Kong, H., Luo, X., Zhang, P., Feng, J., Li, P., Hu, W., Wang, X. and Liu, X. (2023), Self-Healing, Solvent-Free, Anti-Corrosion Coating Based on Skin-like Polyurethane/Carbon Nanotubes Composites with Real-Time Damage Monitoring, 
  40. Krysko, A.V., Awrejcewicz, J., Bodyagina, K.S., Zhigalov, M.V. and Krysko, V.A. (2021a), "Mathematical modeling of physically nonlinear 3D beams and plates made of multimodulus materials", Acta Mechanica, 232(9), 3441-3469. https://doi.org/10.1007/s00707-021-03010-8. 
  41. Krysko, A.V., Awrejcewicz, J., Pavlov, S.P., Bodyagina, K.S. and Krysko, V.A. (2019), "Topological optimization of thermoelastic composites with maximized stiffness and heat transfer", Compos. Part B Eng., 158, 319-327. https://doi.org/10.1016/j.compositesb.2018.09.047. 
  42. Krysko, A.V., Awrejcewicz, J., Zhigalov, M.V., Bodyagina, K.S. and Krysko, V.A. (2021b), "On 3D and 1D mathematical modeling of physically nonlinear beams", In. J. Non-Linear Mech., 134 103734. https://doi.org/10.1016/j.ijnonlinmec.2021.103734. 
  43. Krysko, A.V., Awrejcewicz, J., Zhigalov, M.V., Pavlov, S.P. and Krysko, V.A. (2017), "Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 1: Governing equations and static analysis of flexible beams", Int. J. Non-Linear Mech., 93, 96-105. https://doi.org/10.1016/j.ijnonlinmec.2017.03.005. 
  44. Krysko, A.V., Kalutsky, L.A. and Krysko, V.A. (2024), "Stress-strain state of a porous flexible rectangular FGM size-dependent plate subjected to different types of transverse loading: Analysis and numerical solution using several alternative methods", Thin Wall. Struct., 196, 111512. https://doi.org/10.1016/j.tws.2023.111512. 
  45. Lau, J.S. and Li, Z. (2023), "Human functions in innovation and sustainable marketing", Adv. Concr. Constr., 16(2), 97. https://doi.org/10.12989/acc.2023.16.2.097. 
  46. Lee, S.H., Pumprueg, S., Moudgil, B. and Sigmund, W. (2005), "Inactivation of bacterial endospores by photocatalytic nanocomposites", Colloid Surfaces B Biointerf., 40(2), 93-98. https://doi.org/10.1016/j.colsurfb.2004.05.005. 
  47. Li, F., Gan, J., Zhang, L., Tan, H., Li, E. and Li, B. (2024), "Enhancing impact resistance of hybrid structures designed with triply periodic minimal surfaces", Compos. Sci. Technol., 245, 110365. https://doi.org/10.1016/j.compscitech.2023.110365. 
  48. Li, J., Bin, N., Guo, F., Gao, X., Chen, R., Yao, H. and Zhou, C. (2023a), "Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development", Adv. Nano Res., 15(1), 49-57. https://doi.org/10.12989/anr.2023.15.1.049. 
  49. Li, Q., Hu, X., Perkins, P. and Ren, T. (2023b), "Antimicrobial film based on poly(lactic acid) and natural halloysite nanotubes for controlled cinnamaldehyde release", Int. J. Biol. Macromol., 224, 848-857. https://doi.org/10.1016/j.ijbiomac.2022.10.171. 
  50. Li, X., Ali, H.E. and Albaijan, I. (2023c), "TiO 2-containing nanocomposite structure: Application and investigation in shoes sports medical soles in physical activities", Adv. Nano Res., 15(4), 329-337. https://doi.org/10.12989/anr.2023.15.4.329. 
  51. Li, Y., Li, M., Kong, X., Baniasadi, A., Shaker, A.H. and Ali, H.E. (2023d), "Psychological capital to foster employee creativity in nanotechnology companies: the mediating role of JS and CSR", Adv. Nano Res., 15(3), 277-283. https://doi.org/10.12989/anr.2023.15.3.277. 
  52. Li, Z. (2023), "Resistance of concrete made of fibers in weight lifting slabs against impact in sports training", Struct. Eng. Mech., 86(3), 325-336. https://doi.org/10.12989/sem.2023.86.3.325. 
  53. Li, Z., Peng, S. and Chen, G. (2023e), "Research on safety assessment and application effect of nanomedical products in physical education", Adv. Nano Res., 15(3), 253-261. https://doi.org/10.12989/anr.2023.15.3.253. 
  54. Lin, Y., Taylor, S., Li, H., Fernando, K.A.S., Qu, L., Wang, W., Gu, L., Zhou, B. and Sun, Y.P. (2004), "Advances toward bioapplications of carbon nanotubes", J. Mater. Chem., 14(4), 527-541. https://doi.org/10.1039/B314481J. 
  55. Liu, J., Zhou, Y., Lu, J., Cai, R., Zhao, T., Chen, Y., Zhang, M., Lu, X. and Chen, Y. (2023), "Injectable, tough and adhesive zwitterionic hydrogels for 3D-printed wearable strain sensors", Chem. Eng. J., 475, 146340. https://doi.org/10.1016/j.cej.2023.146340. 
  56. Lu, Z.Q., Liu, W.H., Ding, H. and Chen, L.Q. (2022), "Energy transfer of an axially loaded beam with a parallel-coupled nonlinear vibration isolator", J. Vib. Acoust., 144(5). https://doi.org/10.1115/1.4054324. 
  57. Ma, Z., Qi, J., Xun, W. and Li, Y. (2023), "Sports injury treatment and sports rehabilitation employing the Nanoparticles containing zinc oxide", Adv. Nano Res., 15(1), 67-74. https://doi.org/10.12989/anr.2023.15.1.067. 
  58. Melinte, V., Stroea, L. and Chibac-Scutaru, A.L. (2019), "Polymer nanocomposites for photocatalytic applications", Catalysts, 9(12), 986. https://doi.org/10.3390/catal9120986 
  59. Moniruzzaman, M. and Winey, K.I. (2006), "Polymer nanocomposites containing carbon nanotubes", Macromolecules, 39(16), 5194-5205. https://doi.org/10.1021/ma060733p. 
  60. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: Evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155. 
  61. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dent., 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002. 
  62. Paul, D.R. and Robeson, L.M. (2008), "Polymer nanotechnology: Nanocomposites", Polymer, 49(15), 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017. 
  63. Petousis, M., Ninikas, K., Vidakis, N., Mountakis, N. and Kechagias, J.D. (2023), "Multifunctional PLA/CNTs nanocomposites hybrid 3D printing integrating material extrusion and CO2 laser cutting", J. Manuf. Proc., 86, 237-252. https://doi.org/10.1016/j.jmapro.2022.12.060. 
  64. Petronella, F., Truppi, A., Ingrosso, C., Placido, T., Striccoli, M., Curri, M.L., Agostiano, A. and Comparelli, R. (2017), "Nanocomposite materials for photocatalytic degradation of pollutants", Catalysis Today, 281, 85-100. https://doi.org/10.1016/j.cattod.2016.05.048. 
  65. Popov, V.N. (2004), "Carbon nanotubes: properties and application", Mater. Sci. Eng. Rep., 43(3), 61-102. https://doi.org/10.1016/j.mser.2003.10.001. 
  66. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061. 
  67. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. https://doi.org/10.22034/jsm.2019.563759.1273. 
  68. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y. 
  69. Shahabinejad, E., Shafiei, N. and Ghadiri, M. (2018), "Influence of Temperature Change on Modal Analysis of Rotary Functionally Graded Nano-beam in Thermal Environment", J. Solid Mech., 10(4), 779-803. 
  70. Sheng, C., He, G., Hu, Z., Chou, C., Shi, J., Li, J., Meng, Q., Ning, X., Wang, L. and Ning, F. (2021), "Yarn on yarn abrasion failure mechanism of ultrahigh molecular weight polyethylene fiber", J. Eng. Fibers Fabrics, 16, 15589250211052766. https://doi.org/10.1177/15589250211052766. 
  71. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9. 
  72. So, H.H., Cho, J.W. and Sahoo, N.G. (2007), "Effect of carbon nanotubes on mechanical and electrical properties of polyimide/ carbon nanotubes nanocomposites", Eur. Polym. J., 43(9), 3750-3756. https://doi.org/10.1016/j.eurpolymj.2007.06.025. 
  73. Song, S., Zhang, T. and Zhui, Z. (2023), "Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories", Steel Compos. Struct., 49(5), 487. https://doi.org/10.12989/scs.2023.49.5.487. 
  74. Su, Z., Meng, J. and Su, Y. (2023), "Application of SiO2 nanocomposite ferroelectric material in preparation of trampoline net for physical exercise", Adv. Nano Res., 14(4), 355-362. https://doi.org/10.12989/anr.2023.14.4.355. 
  75. Sun, Z., Wan, Z. and Sachs, S.G. (2023), "Compatibility of carbon nanotubes in concrete with air entrainer and superplasticizer", Constr. Build. Mater., 364, 129944. https://doi.org/10.1016/j.conbuildmat.2022.129944. 
  76. Thostenson, E.T., Li, C. and Chou, T.W. (2005), "Nanocomposites in context", Compos. Sci. Technol., 65(3), 491-516. https://doi.org/10.1016/j.compscitech.2004.11.003. 
  77. Vaia, R.A. and Wagner, H.D. (2004), "Framework for nanocomposites", Mater. Today, 7(11), 32-37. https://doi.org/10.1016/S1369-7021(04)00506-1. 
  78. Vijayan, B.K., Dimitrijevic, N.M., Finkelstein-Shapiro, D., Wu, J. and Gray, K.A. (2012), "Coupling titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites", ACS Catal., 2(2), 223-229. https://doi.org/10.1021/cs200541a. 
  79. Wang, C., Guo, L., Xia, Y., Zhang, C., Sang, X., Xu, C., Zhu, G., Ji, H., Zhao, P., Fang, H., Peng, Z. and Zhang, X. (2024), "Flexural performance and damage evolution of multiple fiberglass-reinforced UV-CIPP composite materials-- A view from mechanics and energy release", J. Mater. Res. Technol., 29, 3317-3339. https://doi.org/10.1016/j.jmrt.2024.02.051. 
  80. Wang, G., Peng, K., Zhou, H., Liu, G., Lou, Z. and Pan, F. (2023a), "Nanocomposite reinforced structures to deal with injury in physical sports", Adv. Nano Res., 14(6), 541-555. https://doi.org/10.12989/anr.2023.14.6.541. 
  81. Wang, H., Huang, Z., Zeng, X., Li, J., Zhang, Y. and Hu, Q. (2023b), "Enhanced anticarbonization and electrical performance of epoxy resin via densified spherical boron nitride networks", ACS Appl. Electr. Mater., 5(7), 3726-3732. https://doi.org/10.1021/acsaelm.3c00451. 
  82. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007. 
  83. Wei, J., Sun, L., Han, J. and Huang, W. (2022), "MWCNTs/CB waterborne conductive smart coating for damage monitoring of composites: Design, fabrication, characterization, and verification", Prog. Organ. Coatings, 172, 107136. https://doi.org/10.1016/j.porgcoat.2022.107136. 
  84. Wu, C.-S. and Liao, H.T. (2007), "Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites", Polymer, 48(15), 4449-4458. https://doi.org/10.1016/j.polymer.2007.06.004. 
  85. Wu, W., Zhang, L., Wu, Y. and Zhao, H. (2024a), "Adaptive saturated two-bit-triggered bipartite consensus control for networked MASs with periodic disturbances: A low-computation method", IMA J. Math. Control Inform., dnae002. https://doi.org/10.1093/imamci/dnae002. 
  86. Wu, Y., Lu, S., Zhang, C., Wang, C. and Fang, H. (2024b), "Unveiling the three-dimensional network and deformation mechanism of foamed polyurethane by coarse-grained and graph theory", J. Mater. Res. Technol., 29, 4650-4661. https://doi.org/10.1016/j.jmrt.2024.02.156. 
  87. Xiao, N., Yang, K., Yin, X., Zhang, F., Wu, Y., Zhang, H., Xiong, B., Zhu, Y., Duan, M. and Zhang, C. (2022), "Analysis of mechanical properties and tribological optimization of Ti-16 wt%Ni alloys with MgAl-Al2O3-graphene microchannels", Wear, 510-511 204515. https://doi.org/10.1016/j.wear.2022.204515. 
  88. Yan, C., Zhang, T., Zheng, T. and Mahmoudi, T. (2024), "Stability characteristic of bi-directional FG nano cylindrical imperfect composite: Improving the performance of sports bikes using carbon nanotubes", Steel Compos. Struct., 50(4), 459-474. https://doi.org/10.12989/scs.2024.50.4.459. 
  89. Yang, K., Zhang, F., Chen, Y., Zhang, H., Xiong, B. and Chen, H. (2022a), "Recent progress on carbon-based composites in multidimensional applications", Compos. Part A Appl. Sci. Manuf., 157, 106906. https://doi.org/10.1016/j.compositesa.2022.106906. 
  90. Yang, S., Huang, Z., Hu, Q., Zhang, Y., Wang, F., Wang, H. and Shu, Y. (2022b), "Proportional optimization model of multiscale spherical bn for enhancing thermal conductivity", ACS Appl. Electr. Mater., 4(9), 4659-4667. https://doi.org/10.1021/acsaelm.2c00878. 
  91. Yang, Y. and Mao, Y. (2023), "Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction", Geomech. Eng., 35(2), 181-194. https://doi.org/10.12989/gae.2023.35.2.181. 
  92. Yang, Y., Zhu, H., Xu, X., Bao, L., Wang, Y., Lin, H. and Zheng, C. (2021), "Construction of a novel lanthanum carbonate-grafted ZSM-5 zeolite for effective highly selective phosphate removal from wastewater", Micropor. Mesopor. Mater., 324, 111289. https://doi.org/10.1016/j.micromeso.2021.111289. 
  93. Ye, M., HangKong, O., Lin, Y., Ynag, Q., Xu, Q., Chen, T., Sun, L. and Ma, L. (2023), "Electron transport properties of Y-type zigzag branched carbon nanotubes", Adv. Nano Res., 15(3), 263-275. https://doi.org/10.12989/.2023.15.3.263. 
  94. Zhang, C., Liu, D., Zhang, X., Spencer, C., Tang, M., Zeng, J., Jiang, S., Jolivet, M. and Kong, X. (2020), "Hafnium isotopic disequilibrium during sediment melting and assimilation", Geochem. Perspect. Lett., 12, 34-39. 
  95. Zhang, C., Zhu, D., Luo, Q., Liu, L., Liu, D., Yan, L. and Zhang, Y. (2017), "Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China", J. Asian Earth Sci., 146, 279-295. https://doi.org/10.1016/j.jseaes.2017.04.032. 
  96. Zhang, C., Liu, D.D., Jiang, Z.X., Song, Y., Luo, Q. and Wang, X. (2022a), "Mechanism for the formation of natural fractures and their effects on shale oil accumulation in Junggar Basin, NW China", Int. J. Coal Geol., 254, 103973. https://doi.org/10.1016/j.coal.2022.103973. 
  97. Zhang, H., Zou, Q., Ju, Y., Song, C. and Chen, D. (2022b), "Distance-based Support Vector Machine to Predict DNA N6-methyladenine Modification", Curr. Bioinform., 17(5), 473-482. https://doi.org/10.2174/1574893617666220404145517. 
  98. Zhang, L. and Huang, Y. (2023), "Investigating the role of nano in preserving the environment with new energy and preventing oil pollution", Adv. Nano Res., 15(6), 541-550. https://doi.org/10.12989/anr.2023.15.6.541. 
  99. Zhang, C., Khorshidi, H., Najafi, E. and Ghasemi, M. (2023a), "Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review", J. Clean. Prod., 384, 135390. https://doi.org/10.1016/j.jclepro.2022.135390. 
  100. Zhang, P., Song, J. and Mahmoudi, T. (2023b), "Simulation and modeling for stability analysis of functionally graded nonuniform pipes with porosity-dependent properties", Steel Compos. Struct., 48(2), 235-250. https://doi.org/10.12989/scs.2023.48.2.235. 
  101. Zhang, X., Li, J., Cui, Y., Habibi, M., Ali, H.E., Albaijan, I. and Mahmoudi, T. (2023c), "Static analysis of 2D-FG nonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory", Steel Compos. Struct., 49(3), 293-306. https://doi.org/10.12989/scs.2023.49.3.293. 
  102. Zhang, Z., Du, J. and Mahmoudi, T. (2023d), "Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil", Adv. Nano Res., 15(4), 355-366. https://doi.org/10.12989/anr.2023.15.4.355. 
  103. Zhao, S., Liang, W., Wang, K., Ren, L., Qian, Z., Chen, G., Lu, X., Zhao, D., Wang, X. and Ren, L. (2023), "A multiaxial bionic ankle based on series elastic actuation with a parallel spring", IEEE T Ind. Electr., 1-13. https://doi.org/10.1109/TIE.2023.3310041.