DOI QR코드

DOI QR Code

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla (Department of Mathematics, Faculty of Science, Sohag University) ;
  • Esraa N. Thabet (Department of Mathematics, Faculty of Science, Aswan University) ;
  • S.M.M.El-Kabeir (Department of Mathematics, Faculty of Science, Aswan University) ;
  • H. A. Hosham (Department of Mathematics, Faculty of Science, Taibah University) ;
  • Shimaa E. Waheed (Department of Mathematics, Faculty of Science, Benha University)
  • Received : 2023.04.30
  • Accepted : 2024.01.27
  • Published : 2024.04.25

Abstract

There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

Keywords

Acknowledgement

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 445-9-917.

References

  1. Ajeel, R.K., Salim, W.S.I.W. and Hasnan, K. (2019), "Thermal performance comparison of various corrugated channels using nanofluid: numerical study", Alexandria Eng J., 58(1), 75-87. https://doi.org/10.1016/j.aej.2018.12.009.
  2. Ajeel, R.K., Salim, W.S.I.W. and Hasnan, K. (2019), "Thermal performance comparison of various corrugated channels using nanofluid: Numerical study", Alexandria Eng J., 58(1), 75-87. https://doi.org/10.1016/j.aej.2018.12.009.
  3. AlDosari, S.M., Banawas, S., Ghafour, H.S., Tlili, I. and Le, Q.H. (2023), "Drug release using nanoparticles in the cancer cells on 2-D materials in order to target drug delivery: A numerical simulation via molecular dynamics method", Eng. Anal. Bound. Elem., 148, 34-40. https://doi.org/10.1016/J.ENGANABOUND.2022.12.020.
  4. Aljaloud, A.S.M., Manai, L. and Tlili, I. (2023), "Bioconvection flow of cross nanofluid due to cylinder with activation energy and second order slip features", Case Stud. Therm. Eng., 42, 102767, https://doi.org/10.1016/J.CSITE.2023.102767.
  5. Babar, H. and Ali, H. M. (2019), "Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges", J Mol Liq., 281, 598-633. https://doi.org/10.1016/j.molliq.2019.02.102.
  6. Banawas, S., Ibrahim, T.K., Tlili, I. and Le, Q.H. (2023), "Reinforced calcium phosphate cements with zinc by changes in initial properties: A molecular dynamics simulation", Eng. Anal. Bound. Elem., 147, 11-21, https://doi.org/10.1016/J.ENGANABOUND.2022.11.033.
  7. Bayones, F.S., Abd-Alla, A.M. and Thabet, E.N. (2022), "Magnetized dissipative soret effect on nonlinear radiative maxwell nanofluid flow with porosity, chemical reaction and joule heating", Waves Random Complex Med., 1-19. https://doi.org/10.1080/17455030.2021.2019352.
  8. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The Nano Scale Bending and Dynamic Properties of Isolated Protein Microtubules Based on Modified Strain Gradient Theory", Adv. nano Res, 7(6), 443-457. https://doi.org/10.12989/ANR.2019.7.6.443.
  9. Bhatti, M.M. and Abdelsalam, S.I. (2021), "Bio-inspired peristaltic propulsion of hybrid nanofluid flow with tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects", Waves Random Complex Med., 1-26. https://doi.org/10.1080/17455030.2021.1998728.
  10. Deville, M.O. (1990), "Chebyshev collocation solutions of flow problems", Comput Methods Appl. Mech. Eng., 80(1-3), 27-37. https://doi.org/10.1016/0045-7825(90)90012-B.
  11. El-gendi, S.E. (1969), "Chebyshev solution of differential, integral and integro-differential equations" , Comput J., 12(3), 282-87. https://doi.org/10.1093/comjnl/12.3.282.
  12. Ellahi, R., Wang, X. and Hameed, M. (2014), "Effects of heat transfer and nonlinear slip on the steady flow of couette fluid by means of chebyshev spectral method", Zeitschrift fur Naturforschung A, 69(1-2), 1-8. https://doi.org/10.5560/zna.2013-0060.
  13. Farhana, K., Kadirgama, K., Rahman, M.M., Noor, M.M., Ramasamy, D., Samykano, M., Najafi, G., Sidik, N.A.C. and Tarlochan, F. (2019), "Significance of alumina in nanofluid technology", J. Therm. Anal. Calorim., 138(2), 1107-1126. https://doi.org/10.1007/s10973-019-08305-6.
  14. Henda, M. Ben, Alkanhal, T.A., Rebey, A., Musmar, S.A. and Tlili, I. (2023), "High-efficiency perovskite photovoltaic system performance by molecular dynamics method: Optimizing electron transport thicknesses, hole transport, and anti-reflector layers of the sustainable energy materials", Eng. Anal. Bound. Elem., 150, 120-26, https://doi.org/10.1016/J.ENGANABOUND.2023.02.004.
  15. Imtiaz, M., Shahid, F., Hayat, T. and Alsaedi, A. (2019). "Melting heat transfer in Cu-water and Ag-water nanofluids flow with homogeneous-heterogeneous reactions", Appl. Math. Mech., 40(4), 465-80. https://doi.org/10.1007/s10483-019-2462-8.
  16. Islam, N., Riasat, S., Ramzan, M.H., Ghazwani, A.S., Pasha, A.A., Kadry, S. and Eldin, S.M. (2023), "Thermal efficiency appraisal of hybrid nanocomposite flow over an inclined rotating disk exposed to solar radiation with arrhenius activation energy", Alexandria Eng J., 68, 721-32. https://doi.org/10.1016/j.aej.2022.12.029.
  17. Jiji, L.M. and Ganatos., P. (2010), "Microscale flow and heat transfer between rotating disks", Int. J. Heat Fluid Flow., 31(4), 702-710. https://doi.org/10.1016/j.ijheatfluidflow.2010.02.008.
  18. Khan, S.A., Hayat, T. and Alsaedi, A. (2022), "Simultaneous features of soret and dufour in entropy optimized flow of reiner-rivlin fluid considering thermal radiation", Int. Commun. Heat Mass Transf., 137. https://doi.org/10.1016/j.icheatmasstransfer.2022.106297.
  19. Khan, Z., Thabet, E.N., Abd-Alla, A.M. and Bayones, F.S. (2023), "Investigating the effect of bio-convection, chemical reaction, and motile microorganisms on prandtl hybrid nanofluid flow across a stretching sheet", ZAMM J. Appl. Math. Mech., e202300509, https://doi.org/10.1002/ZAMM.20230050.
  20. Le, Q.H., Ali, Q., Al-Khaled, K., Amir, M., Riaz, S., Ullah Khan, S., Abdelmalek, Z. and Tlili, I. (2024), "Study of hybrid nanofluid containing graphene oxide and molybdenum disulfide nanoparticles with engine oil base fluid: A non-singular fractional approach", Ain Shams Eng. J., 15(1), 102317, https://doi.org/10.1016/J.ASEJ.2023.102317.
  21. Le, Q.H., Hussain, Z., Khan, N., Zuev, S., Javid, K., Khan, S.U., Abdelmalek, Z. and Tlili, I. (2023a), "Chebyshev collocation simulations for instability of hartmann flow due to porous medium: a neutral stability and growth rate assessment", Ain Shams Eng. J., 14(12), 102215, https://doi.org/10.1016/J.ASEJ.2023.102215.
  22. Le, Q.H., Smida, K., Abdelmalek, Z. and Tlili, I. (2023b), "Removal of heavy metals by polymers from wastewater in the industry: A molecular dynamics approach", Eng. Anal. Bound. Elem.,155, 1035-1342. https://doi.org/10.1016/J.ENGANABOUND.2023.07.0.
  23. Letti, C.J., Costa, K.A.G., Gross, M.A., Paterno, L.G., Pereira-daSilva, M.A., Morais, P.C. and Soler, M.A.G. (2017), "Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites", Adv. Nano Res., 5(3), 215-230. https://doi.org/10.12989/ANR.2017.5.3.215.
  24. Li, C. and Tlili, I. (2023), "Novel study of perovskite materials and the use of biomaterials to further solar cell application in the built environment: A molecular dynamic study", Eng. Anal. Bound. Elem.,155, 425-31, https://doi.org/10.1016/J.ENGANABOUND.2023.06.018.
  25. Lv, Y.P., Shaheen, N., Ramzan, M., Mursaleen, M., Nisar, K.S. and Malik, M.Y. (2021), "Chemical reaction and thermal radiation impact on a nanofluid flow in a rotating channel with hall current", Sci Rep., 11(1). https://doi.org/10.1038/s41598-021-99214-y.
  26. Mahanthesh, B., Gireesha, B.J., Animasaun, I.L., Muhammad, T. and Shashikumar, N.S. (2019), "MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source", Phys. Scr., 94(8). https://doi.org/10.1088/1402-4896/ab18ba.
  27. Parand, K., Mahdi Moayeri, M., Latifi, S. and Delkhosh, M. (2017), "A numerical investigation of the boundary layer flow of an eyring-powell fluid over a stretching sheet via rational Chebyshev functions", Eur. Phys. J. Plus., 132(7). https://doi.org/10.1140/epjp/i2017-11600-0.
  28. Patil, M.B., Shobha, K.C., Bhattacharyya, S. and Said, Z. (2023), "Soret and dufour effects in the flow of casson nanofluid in a vertical channel with thermal radiation: Entropy analysis", J. Therm. Anal. Calorim., 148(7), 2857-2867. https://doi.org/10.1007/s10973-023-11962-3.
  29. Rashid, A., Dawar, A., Ayaz, M., Islam, S., Galal, A.M. and Gul, H. (2023), "Homotopic solution of the chemically reactive magnetohydrodynamic flow of a hybrid nanofluid over a rotating disk with brownian motion and thermophoresis effects", ZAMM J. Appl. Math. Mech., 103(8), e202200262. https://doi.org/10.1002/zamm.202200262.
  30. Reddy, M.G., Naveen, K.R., Prasannakumara, B.C., Rudraswamy, N.G. and Kumar, K.G. (2021), "Magnetohydrodynamic flow and heat transfer of a hybrid nanofluid over a rotating disk by considering arrhenius energy", Commun. Theor. Phys., 73(4). https://doi.org/10.1088/1572-9494/abdaa5.
  31. Reddy, Y.D. and Shankar Goud, B. (2023), "Comprehensive analysis of thermal radiation impact on an unsteady MHD nanofluid flow across an infinite vertical flat plate with ramped temperature with heat consumption", Results Eng., 17. https://doi.org/10.1016/j.rineng.2022.100796
  32. Renuka, A., Muthtamilselvan, M., Doh, D.H. and Cho, G.R. (2020), "Entropy analysis and nanofluid past a double stretchable spinning disk using homotopy analysis method", Math. Comput. Simul., 171, 152-169. https://doi.org/10.1016/j.matcom.2019.05.008.
  33. Rezaee, M., Yeganegi, A., Namvarpour, M. and Ghassemi, H. (2022), "Fluid flow dynamics in deformed carbon nanotubes with unaffected cross section", Adv. Nano Res., 12(3), 253-261. https://doi.org/10.12989/ANR.2022.12.3.253.
  34. Sharif, H., Khadimallah, M.A., Naeem, M.N., Hussain, M., Hussain, S. and Tounsi, A. (2021a), "Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-christov heat flux model", Adv. Nano Res., 10(3), 221-234. https://doi.org/10.12989/ANR.2021.10.3.221.
  35. Sharif, H., Khadimallah, M.A., Naeem, M.N., Hussain, M., Mahmoud, S.R., Al-Basyouni, K.S. and Tounsi, A. (2021b), "The investigation of magnetohydrodynamic nanofluid flow with arrhenius energy activation", Adv. Nano Res., 10(5), 437-448. https://doi.org/10.12989/ANR.2021.10.5.437.
  36. Shoaib, M., Raja, M.A.Z., Sabir, M.T., Awais, M., Islam, S., Shah, Z. and Kumam, P. (2021), "Numerical analysis of 3-D MHD hybrid nanofluid over a rotational disk in presence of thermal radiation with joule heating and viscous dissipation effects using Lobatto IIIA technique", Alexandria Eng J., 60(4), 3605-3619. https://doi.org/10.1016/j.aej.2021.02.015.
  37. Tlili, I., Alkanhal, T.A., Rebey, A., Henda, M. Ben and Musmar, S.A. (2023). "Nanofluid bioconvective transport for nonnewtonian material in bidirectional oscillating regime with nonlinear radiation and external heat source: Applications to storage and renewable energy", J. Energy Storage, 68, 107839. https://doi.org/10.1016/J.EST.2023.107839.
  38. Vanaki, S.M., Ganesan, P. and Mohammed, H.A. (2016), "Numerical study of convective heat transfer of nanofluids: A review", Renew Sustain Energy Rev., 54, 1212-1239. https://doi.org/10.1016/j.rser.2015.10.042.
  39. Vijay, N. and Sharma, K. (2023), "Magnetohydrodynamic hybrid nanofluid flow over a decelerating rotating disk with soret and dufour effects", Multidiscipl. Model. Mater. Struct., 19(2), 253-276. https://doi.org/10.1108/MMMS-08-2022-0160.
  40. Wang, H., Zandi, Y., Gholizadeh, M. and Issakhov, A. (2021), "Buckling of porosity-dependent bi-directional fg nanotube using numerical method", Adv. Nano Res, 10(5), 493-507. https://doi.org/10.12989/ANR.2021.10.5.493.
  41. Yanzhen, Q., Zandi, Y., Rahimi, A., Pourkhorshidi, S., RocoVidela, A., Khadimallah, M.A., Jameel, M., Kasehchi, E. and Assilzadeh, H. (2021), "Nano-SiO2 for efficiency of geotechnical properties of fine soils in mining and civil engineering", Adv. Nano Res, 11(3), 301-12. https://doi.org/10.12989/ANR.2021.11.3.301.
  42. Yasinskiy, A., Navas, J., Aguilar, T., Alcantara, R., Gallardo, J.J., Sanchez-Coronilla, A., Martin, E.I., De Los Santos, D. and Fernandez-Lorenzo, C. (2018), "Dramatically enhanced thermal properties for tio2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants", Renew Energy., 119, 809-19. https://doi.org/10.1016/j.renene.2017.10.057.