DOI QR코드

DOI QR Code

Stabilization Technique for a Dual-axis Rotational Inertial Navigation System considering Waves

파도를 고려한 2축 회전형 관성항법시스템의 안정화 기법

  • 채명석 (경일대학교 IT공학과) ;
  • 조성윤 (경일대학교 기계자동차공학전공) ;
  • 박찬국 (서울대학교 항공우주공학과) ;
  • 조민수 (국방과학연구소 미사일연구원) ;
  • 박찬주 (국방과학연구소 미사일연구원)
  • Received : 2024.02.29
  • Accepted : 2024.04.12
  • Published : 2024.04.30

Abstract

The rotational inertial navigation system can provide more accurate navigation information by mounting an IMU (Inertial Measurement Unit) on the gimbal and rotating the gimbal regularly to cancel out the errors of the IMU. However, when an attitude change occurs due to waves, the attitude error is not removed to 0 at the end of one cycle of the rotation procedure and causes a large position error. In this paper, considering this problem, we propose a method of stabilizing the external gimbal by rotating it based on the roll information of the vehicle. Based on simulation, the impact of waves is analyzed and the performance of external gimbal stabilization is verified.

회전형 관성항법시스템은 IMU(: Inertial Measurement Unit)를 김블 위에 장착하고 김블을 규칙적으로 회전시켜 IMU의 오차를 상쇄시킴으로써 보다 정확한 항법 정보를 제공할 수 있다. 그러나 파도에 의해 자세 변화가 생기면 회전절차의 한 주기가 끝나는 시점에 자세 오차가 0으로 상쇄되지 않게 되어 큰 위치 오차를 유발한다. 본 논문에서는 이 문제를 고려하여 항체의 롤각 정보를 기반으로 외부 김블을 회전시켜 안정화를 시키는 방법을 제안한다. 시뮬레이션을 기반으로 파도에 의한 영향을 분석하고 외부 김블 안정화의 성능을 검증한다.

Keywords

Acknowledgement

본 연구는 2022년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구임(UI220048SD).

References

  1. D. H. Titterton, Strapdown Inertial Navigation Techology. United Kingdom: The Institution of Electrical Engineers, 1996.
  2. R. G. Brown, and P. Hwang, Introduction to Random Signals and Applied Kalman Filtering. New York: John Wiley & Sons, 1997.
  3. M. Chae, "Development of a Real Trajectory-based Simulator to Verify the Reliability of the Integrated Navigation System for Trains," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 1, 2021, pp. 135-144.
  4. S. Jeon, T. Jo, and S. Hwang, "Utilization Trend of Global Satellite Navigation Systems for Next Generation Mobile Communications and Smart Mobility," J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 6, 2023, pp. 1057-1066.
  5. J. Bong, S. Jeong, "A Study of GNSS Perfoemance Enhancement using Correction Estimation and Visible Satellites Selection," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 5, 2022, pp. 995-1002.
  6. S. Cho, "IM-filter for INS/GPS-integrated navigation system containing low-cost gyros," IEEE trans. Aerospace, Electronic Systems, vol. 50, no. 4, 2014, pp. 2619-2629. https://doi.org/10.1109/TAES.2014.130128
  7. J. Park and K. Choi, "Overview of sensor fusion techniques for vehicle positioning," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 2, 2016, pp. 139-144. https://doi.org/10.13067/JKIECS.2016.11.2.139
  8. L. Wang, K. Li, L. Wang, and J. Gao, "Identifying Z-axis gyro drift and scale factor error using azimuth measurement in fiber optic gyroscope single-axis rotation inertial navigation system," Optical Engineering, vol. 56, no. 2, 2017, pp. 024102.
  9. J. Cheng, D. Chen, L. Rene, D. Guan, and X. Wang, "Research on comprehensive calibration techniques for single-axis rotational inertial navigation system," Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 2014, pp. 550-555.
  10. S. Du, W. Sun, and Y. Gao, "Improving observability of an inertial system by rotary motions of an IMU," Sensors, vol. 17, no. 4, 2017.
  11. B. L. Yuan, "Error compensation of an optical gyro INS by multi-axis rotation," Measurement Science and Technology, vol. 23, no. 2, 2012, pp. 1022-1028. https://doi.org/10.1088/0957-0233/23/2/025102
  12. F. Zha, L. Chang, and H. He, "Comprehensive error compensation for dual-axis rotational inertial navigation system," IEEE Sensors Journal, vol. 20, no. 7, 2020, pp. 3788-3802. https://doi.org/10.1109/JSEN.2019.2960532
  13. Q. Wei, F. Zha, and L. Chang, "Novel rotation scheme for dual-axis rotational inertial navigation system based on body diagonal rotation of inertial measurement unit," Measurement Science and Technology, vol. 24, no. 9, 2022, pp. 095105.