
409

FPGA를 한 32비트 부동소수 곱셈기 설계

Xuhao Zhang
*
ㆍ김 익

**

Design of 32-bit Floating Point Multiplier for FPGA

Xuhao Zhang
*
ㆍDae-Ik Kim

**

요 약

빠른 고속 데이터 신호 처리 논리 연산을 한 부동 소수 연산 요구 사항이 확 됨에 따라 부동 소수

연산 장치의 속도는 시스템 작동에 향을 미치는 핵심 요소이다. 본 논문에서는 다양한 부동소수 곱셈기 방

식의 성능 특성을 연구하고, 캐리와 합의 형태로 부분 곱을 압축한 다음, 최종 결과를 얻기 해 캐리 미리 보기

가산기를 사용한다. Intel Quartus II CAD 툴을 이용하여 Verilog HDL로 부동소수 곱셈기를 기술하고 성능

평가를 하 다. 설계된 부동소수 곱셈기는 면 , 속도 력 소비에 해 분석 비교하 다. 월러스 트리

를 사용한 수정 부스 인코딩 방식의 FMAX는 33.96Mhz로 부스 인코딩보다 2.04배, 수정 부스 인코딩보다 1.62

배, 월러스 트리를 사용한 부스 인코딩보다 1.04배 빠르다. 한, 수정 부스 인코딩에 비해 월러스 트리를 이용한

수정 부스 인코딩 방식의 면 은 24.88% 감소하고, 력소모도 2.5% 감소하 다.

ABSTRACT

With the expansion of floating-point operation requirements for fast high-speed data signal processing and logic

operations, the speed of the floating-point operation unit is the key to affect system operation. This paper studies the

performance characteristics of different floating-point multiplier schemes, completes partial product compression in the

form of carry and sum, and then uses a carry look-ahead adder to obtain the result. Intel Quartus II CAD tool is used

for describing Verilog HDL and evaluating performance results of the floating point multipliers. Floating point multipliers

are analyzed and compared based on area, speed, and power consumption. The FMAX of modified Booth encoding with

Wallace tree is 33.96 Mhz, which is 2.04 times faster than the booth encoding, 1.62 times faster than the modified booth

encoding, 1.04 times faster than the booth encoding with wallace tree. Furthermore, compared to modified booth encoding,

the area of modified booth encoding with wallace tree is reduced by 24.88%, and power consumption of that is reduced by

2.5%.

키워드

Floating Point Multiplier, Modified Booth Encoding, Wallace Tree, Carry Look-Ahead Adder, Fpga

부동 소수 곱셈기, 수정 부스 인코딩, 월러스 트리, 캐리 미리 보기 가산기, FPGA

* 남 학교 자통신공학과

 (zhangxuh123@sina.com)

** 교신 자 : 남 학교 자통신공학과

ㆍ 수 일 : 2024. 01. 16

ㆍ수정완료일 : 2024. 02. 28

ㆍ게재확정일 : 2024. 04. 12

ㆍReceived : Jan. 16, 2024, Revised : Feb. 28, 2024, Accepted : Feb. 12, 2024

ㆍCorresponding Author : Dae-Ik Kim

　Dept. of Electronic Communication Engineering, Chonnam National University

 Email : daeik@jnu.ac.kr

　

Regular paper
Journal of the KIECS. pp. 409-416, vol. 19, no. 2, Apr. 30. 2024, t. 124, pISSN 1975-8170 | eISSN 2288-2189

http://dx.doi.org/10.13067/JKIECS.2024.19.2.409

JKIECS, vol. 19, no. 02, 409-416, 2024

410

Ⅰ. Introduction

In digital signal processors (DSP), multipliers are

essential functional units [1-3]. Floating-point

multipliers (FPM) have the characteristics of large

area, long delay, and complex structure. In order to

design a high-speed floating-point multiplier, based

on the floating-point operation process, in order to

reduce the number of partial products, speed up the

sum of partial products, and then improve the

operation speed of the multiplier, the delay, area,

structural complexity, etc. In this regard, each

process of the multiplication component has been

systematically studied and fully studied and

compared [4]. Parallel multipliers are mainly used in

high-performance digital processors to complete

high-speed data operations. In the process of

in-depth research on multipliers, a series of

optimization strategies have emerged: reducing the

number of partial products through Booth algorithm

and compressing tree structures such as Wallace

Tree and Dadda Tree to achieve parallel processing

of partial products; carry look-ahead adder (CLA,)

and carry save adder (CSA) realize the fast sum of

partial products of the final two rows. Among

them, the partial product compression unit is a key

factor that determines the speed, power, and area

of the multiplier [5].

To improve the efficiency of floating point

multipliers, many fast multiplication algorithms have

been proposed and modeled. This article designs a

32-bit floating-point multiplier. When designing a

floating-point multiplier, part of the product

compression unit is a key factor in determining the

speed, power, and area of the multiplier. Some fast

multiplication schemes that may be considered for

implementation are Booth's algorithm, Vedic

multiplication algorithm and array multipliers, Vedic

multipliers and Wallace tree multipliers for study

and comparison. Rounding is also given due

consideration when implementing the multiplier

design. Mainly research on modified booth and

wallace tree, and optimizing the design of the

compression unit of the mantissa operation part.

First, the system structure of the multiplier is

introduced, then the structure and logic circuit of

the compression unit are optimized and analyzed,

and simulation analysis is performed, and finally a

conclusion is drawn.

Ⅱ. Floating point multiplier

The multiplier and multiplicand input to the

multiplier designed in this article are both 32-bit

single-precision floating-point numbers: including

8-bit exponent bit, 1-bit sign bit, and 23-bit

mantissa bit. The output floating point result is a

40-bit extended precision floating point number:

including 8 exponent bits, 1 sign bit, and 31

mantissa bits. When performing a multiplication

operation, first the multiplier and multiplicand

mantissas are expanded to 25 bits: including 1 sign

bit, 1 hidden bit, and 23 mantissa bits [6].

The mantissa digit of the product is obtained by

multiplying the multiplier and the mantissa digit of

the dividend and performing normalization and

rounding, as shown in equation (1), where Normal

is the exponent correction during the mantissa

normalization process, and the value of Normal. It

is equal to the value of the number of right shifts

when normalizing the mantissa (if the mantissa is

shifted right by 1 bit to normalize, then Norm a l

= 1; if the mantissa is shifted right by 2 bits to

normalize, then Normal=2, if the mantissa is

already a normalized number, then Normal=0). The

exponent c(exp) of the product is equal to the sum

of the exponents of the two operands plus the

value of the exponent correction bit, as shown in

equation (2).

[c(man),Normal]=a(man)*b(man) ⋯ (1)

FPGA를 한 32비트 부동소수 곱셈기 설계

411

 c(exp)=a(exp)+b(exp)+Normal ⋯ (2)

The mantissa operation part determines the

speed of the entire multiplier. Booth coding is a

common algorithm for reducing the number of

partial products. Considering the delay, area and

complexity of the circuit, the multiplier designed in

this article adopts the modified Booth algorithm

[7]. First, the mantissas of the multiplier and the

multiplicand are modified by the Booth coding unit

to generate 13 partial products, and then the

Wallace tree composed of the compression units of

the 3-2 and 4-2 compressors compresses these 13

partial products into Carry and Sum forms. , and

finally the product is normalized and rounded

during CLA summation, and the exponent of the

product is adjusted, as shown in Fig. 1.

Fig. 1 Floating point multiplier operation flow chart

The flow chart of floating point operations is

given in Fig. 1 (taking 32-bit floating point

operations as an example).

Step 1: Multiply the mantissa bits of the

operands, where the input data is 24 bits and the

output result is 48 bits;

Step 2: The exponent part of the operands is

added, and the result is c(exp);

Step 3: Determine the mantissa situation. If it is

0, perform step 7 to set the exponent position of

the result to -128;

Steps 4 and 5: used to normalize the results;

If it is necessary to shift right by 1 bit for

normalization, perform step 8, shift the mantissa to

the right, and add 1 to the direct index. If it is

necessary to shift right by two digits for

normalization, perform step 9, shift the mantissa to

the right by two digits, and add 2 to the exponent;

Step 10: Expand the mantissa result to

extended-precision floating-point format.

Steps 6 to 11: Determine the exponent situation

If the exponent overflows, proceed to step 14. If

the mantissa is greater than 0, set the exponent to

the maximum positive number. If the mantissa is

less than 0, set the exponent to the minimum

negative number.

If the exponent underflows, execute step 15, set

the exponent to -128, and the mantissa is 0, if the

exponent is within the range. Then proceed to step

16 to obtain the final result.

For floating-point multipliers, the multiplication

algorithm and structure are the basis of its

hardware implementation. The main steps in

floating-point multiplication are: partial product

generation, partial product compression, carry

propagation addition and rounding processing.

Reduction and compression of partial products is

the key to distinguishing various multiplication

algorithms. And according to existing papers, most

of the time, area, and power consumption are

consumed in mantissa multiplication. Therefore,

when designing, you need to choose an appropriate

algorithm based on delay, power, speed, area,

complexity and other requirements.

JKIECS, vol. 19, no. 02, 409-416, 2024

412

Ⅲ. Design of Floating Point Multiplier

The mantissa operation part consumes the most

resources and has the longest delay, and is the key

to the design of floating-point multipliers. The

mantissa operation includes three parts: Booth

coding to generate partial products, Wallace tree

and CLA. The design of this key component is

introduced below.

3.1 Modified Booth encoding

Since Booth encoding does not improve the

operation speed of the multiplier, the two bits of

each overlap check multiplication in the Booth

algorithm are extended to three bits of each overlap

check, that is the modified Booth algorithm. The

modified Booth algorithm encodes each time when

checking 3 bits, 2 bits are from the current group

and the 3rd bit is from the lowest bit of the higher

group. Effectively, the lowest bit of each group is

checked 2 times. This modified Booth algorithm can

ensure that the partial product is reduced by half,

thereby increasing the computing speed and

reducing the hardware complexity [8]. This

multiplier generates partial products based on the

modified Booth algorithm. According to the above

formula (3), the value of the partial product can be

calculated. For the continuous three-digit data

obtained at one time, the lowest bit and the middle

bit represent 1, while the highest bit represents -2,

and the result is three bits. The sum of the

additions, so the possible results after encoding can

only be: {0, X, -X, 2X, -2X}. Table 1 is the partial

product generation coding table of the modified

Booth algorithm :

 ∙

∙

 ⋯ (3)

Table 1. Modified Booth coding truth table

 　
 0 0 0 0

 0 0 1 +X

 0 1 0 +X

 0 1 1 +2X

 1 0 0 -2X

 1 0 1 -X

 1 1 0 -X

 1 1 1 0

For the partial product based on the modified

Booth coding 16-bit complement form, the dot

matrix diagram is shown in Fig. 2. The number of

partial products obtained using this encoding

method is approximately (n +1)/2. Adding 1 is

because it is necessary to ensure that the partial

product generated by the highest bit is positive,

otherwise it needs to be supplemented for

correction. The advantage of the modified Booth

algorithm is that it can compress the number of

partial products PPi to about 1/2 of the original,

and it has nothing to do with the value of the

multiplier. Therefore, the number of summations

required to complete the sum of partial products is

approximately 1/2 of the original number. This can

not only improve the operation speed in Floating

Point Multiplier, but also reduce the number of

adders required. However, it should be noted that

the operands in the modified Booth algorithm are

expressed in two's complement, and sign extension

is required during addition and subtraction

operations [9].

Fig. 2 Booth coded multiplier sign bit extension

FPGA를 한 32비트 부동소수 곱셈기 설계

413

3.2 Wallace tree structure

The first step of the Wallace tree structure is to

group the partial multiplication integral of each

column into a 3-bit group. In order to reduce the

number of addends, each group uses a CSA

component composed of a full adder; the second

step, the results generated in the first step continue

to be grouped by 3 bits, and the pseudo-sum and

local carry signals of the same weight are processed

through the CSA component, thereby reducing the

number of addends again until there are only two

outputs in the end;　 the third step, the final

pseudo-sum and the local carry are added through

the carry-pass adder to obtain the real result.

The number of operands in the above method is

reduced by 1.5 times, and the intermediate results

will be processed in this way until there are only

two outputs in the end.

There are two main structures for fast

compression of partial products: Wallace tree and

Dadda tree. The Wallace tree compresses as many

partial products as possible at each stage and is

mainly used to implement high-speed parallel

multiplier design [10]; the Dadda tree distributes

partial products at each stage for compression thus

balancing circuit delay and layout complexity[3].

The multiplier designed in this article uses the

Wallace tree structure to implement partial product

parallel compression. The depth of the compression

tree is log levels, where N represents the
number of partial product rows.

Fig. 3 Schematic diagram of Wallace tree connection

structure

Fig. 3 is a schematic diagram of the Wallace

tree connection structure, in which each rectangle

represents a set of 4:2 compressors, and the line

segments with arrows represent partial products

and intermediate results to draw conclusions. The

Wallace tree structure is theoretically the fastest

adder tree for multiplication operations, but its

complex connections make layout implementation

difficult. Therefore, a 4:2 compressor is needed.

Using a 4:2 reducer can reduce the wiring

complexity and make the circuit structure regular

[11]. The Wallace tree has a large area but small

delay. In the Floating Point Multiplier design of

this article, the Wallace tree multiplier structure is

adopted in order to improve the operation speed.

To improve performance of the multipliers, 4:2

compressor logic is often designed. Fig. 4 is an

improved structure [12]. In this structure, the

delays from the four inputs to the output are equal,

which is convenient for layout and consumes less

power. This structure is used in the design, and its

logical expression is:

 ⊕⊕⊕⊕ ⋯ (4)

 ⊕⊕⊕
∙ ∙

 ⋯ (5)

 ∙ ∙ ⋯ (6)

Fig. 4 4:2 Improved structure of compressor

Based on the above design, the circuit diagram

of the 32-bit floating point multiplier finally

designed in this article is shown in Fig. 5.

JKIECS, vol. 19, no. 02, 409-416, 2024

414

Fig. 5 The modified booth_tree circuit diagram designed in

this article

3.3. Carry look-ahead adder

The performance of the adder can be analyzed

from the aspects of delay, power consumption, area,

etc. The basic idea of improving the speed of the

adder is to speed up the generation and

transmission time of the carry signal by improving

the carry method [13]. The characteristic of the

carry look-ahead adder is that carry signals at all

levels are generated simultaneously. This parallel

approach greatly shortens the time for carry

generation. Fig. 6 is the logic diagram of a 4-bit

carry look-ahead adder.

Fig. 6 4-bit carry look-ahead adder

Ⅳ. Simulation results and discussion

The floating point multiplier is designed by

Verilog HDL and verified and synthesized on Intel

Quartus II CAD tool. Te simulation results of the

designed floating point multiplier are shown in Fig.

7.

The 32-bit floating point multiplier has been

implemented in the Quartus II CAD tool as shown

in Figure 7. For inputs a1 = 32'h3f67e1fb; b1 =

32'h3e0208d5; a2 = 32'h3f78e1fb; b2 = 32'h3e0299d5;

and the output obtained is c1=32'h3deb9182;

c2=32'h3dfdf09f;

Fig. 7 32-bit floating point multiplier logic simulation results

Fig. 8 shows performance results of speed,

power consumption and area of the designed

floating point multiplier using modified Booth

encoding with the Wallace tree. And the

performance comparison results are shown in Table

2. We implement 4-types of floating point

multipliers. And Booth means Booth encoding,

Modified Booth means Modified Booth encoding,

Booth Tree means Booth encoding using the

Wallace tree, and Modified_booth_tree means

Modified Booth encoding using the Wallace tree,

respectively.

FPGA를 한 32비트 부동소수 곱셈기 설계

415

Fig. 8 The results of area, speed, and power of the

designed floating point multiplier

From Table 2, modified booth encoding with

wallace tree is the best. It has a small area, low

power consumption and the fastest computing

speed. The FMAX of modified Booth encoding with

Wallace tree is 33.96 Mhz, which is 2.04 times

faster than the booth encoding, 1.62 times faster

than the modified booth encoding, 1.04 times faster

than the booth encoding with wallace tree.

Furthermore, compared to modified booth encoding,

the area of modified booth encoding with wallace

tree is reduced by 24.88%, and power consumption

of that is reduced by 2.5%.

Table 2. Comparison of implementation results of various

floating point multipliers

Performance

metrics
LE REG

FMAX

(Mhz)

Power

(mW)

booth 2397 97 16.63 171.52

modified_booth 1736 97 21 170.02

booth_tree 2375 97 32.65 175.93

modified_booth

_tree
1784 97 33.96 171.45

Ⅴ. Conclusion

In this paper, we design a 32-bit floating point

multiplier, uses the modified Booth encoding with

Wallace tree to complete partial product

compression in the form of carry and sum, and

then uses a carry look-ahead adder to obtain the

final result. We compared different floating point

multipliers: Booth encoding, modified Booth

encoding, Booth encoding with Wallace tree, and

modified Booth encoding with Wallace tree.

Simulation results from the FPGA CAD tool show

that the floating-point multiplier using modified

Booth encoding with the Wallace tree is the fastest,

and is expected to be widely used in high-speed

DSP applications.

References

[1] S. Kim, H. Seo, S. Kim, and D. Kim,

“Approximate Multiplier With Efficient 4-2

Compressor and Compensation Characteristic,”

J. of the Korea Institute of Electronic

Communication Sciences, vol. 17, no. 1, 2022,

pp. 173-180.

[2] H. Seo and D. Kim, “Approximate multiplier

with high density, low power and high speed

using efficient partial product reduction,” J. of

JKIECS, vol. 19, no. 02, 409-416, 2024

416

the Korea Institute of Electronic Communication

Sciences, vol. 17, no. 4, 2022, pp. 671-678.

[3] J. Kim and S. Lee, “High-Performance

Multiplier Using Modified Gate-Diffusion

Input (m-GDI) Compresso,” J. of the Korea

Institute of Electronic Communication Sciences,

vol. 18, no. 2, 2023, pp. 285-290.

[4] A. Akkas and M. J. Schulte, “A quadruple

precision and dual double precision

floating-point multiplier,” In Proc. Euromicro.

Symp. on Digital System Design, Belek-Antalya,

Turkey, Sept. 2003, pp. 76-81.

[5] S. V. Siddamal, R. M. Banakar, and B. C.

Jinaga, “Design of High-Speed Floating Point

Multiplier,” In Proc. 4th IEEE Int. Symp. on

Electronic Design, Test and Applications (delta

2008), Hong Kong, China, Jan. 2008, pp.

285-289.

[6] IEEE Std. 754-1985, IEEE Standard for

Binary Floating-point Arithmetic. IEEE, New

York, NY, 1985.

[7] T. Krishnan and S. Saravanan, “Design of

Low-Area and High Speed Pipelined Single

Precision Floating Point Multiplier,” In Proc.

2020 6th Int. Conf. (ICACCS). Communications,

Coimbatore, India, Mar. 2020, pp. 1259-1264.

[8] Y. Guo, H. Sun, and S. Kimura, “Small-Area

and Low-Power FPGA-Based Multipliers

using Approximate Elementary Modules,” In

Proc. 2020 25th Asia and South Pacific Design

Automation Conf. (ASP-DAC). Communications,

Beijing, China, 2020, pp. 599-604.

[9] X. Jiang, P. Xiao, M. Qiu, and G. Wang,

“Performance effects of pipeline architecture

on an FPGA-based binary 32 floating point

multiplier,” J. of Microprocessors and

Microsystems, vol. 37, no. 8, 2013, pp.

1183-1191.

[10] M. J. Rao and S. Dubey, “A high speed and

area efficient Booth recoded Wallace tree

multiplier for fast arithmetic circuits,” In Proc.

2012 Asia Pacific Conf. on Postgraduate Research

in Microelectronics and Electronics,

Communications, Hyderabad, India, Dec. 2012,

pp. 220-223.

[11] Z. Zhao and Z. Line, “Design of an

improved Wallace tree multiplier,” J. of

Electronic Design Applications, no. 8, 2006, pp.

113-116.

[12] S. Yuan and C. Zhang, “A Design of

High-Speed 4-2 Compressor for Fast

Multiplier,” J. of Microelectronics & Computer,

vol. 19, no. 4, 2002, pp. 53-56.

[13] K. Thiruvenkadam, J. Ramesh, and A. S.

Pillai, “Area-efficient dual-mode fused

floating-point three-term adder,” J. of Circuits,

Systems, and Signal Processing, vol. 38, no. 1,

2019, pp.173-190.

자 소개

Xuhao Zhang

2023년 남 학교 자통신공학

과 졸업 (공학석사)

※ 심분야 : 력/고집 /고속 회로설계

김 익(Dae-Ik Kim)

1991년 북 학교 자공학과

졸업(공학사)

1993년 북 학교 학원 자

공학과 졸업(공학석사)

1996년 북 학교 학원 자

공학과 졸업(공학박사)

2002년∼ 재 남 학교 자통신공학과 교수

※ 심분야 : VLSI 설계, 력 회로설계

