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요 약

빠른 고속 데이터 신호 처리  논리 연산을 한 부동 소수  연산 요구 사항이 확 됨에 따라 부동 소수  

연산 장치의 속도는 시스템 작동에 향을 미치는 핵심 요소이다.  본 논문에서는 다양한 부동소수  곱셈기 방

식의 성능 특성을 연구하고, 캐리와 합의 형태로 부분 곱을 압축한 다음, 최종 결과를 얻기 해 캐리 미리 보기 

가산기를 사용한다. Intel Quartus II CAD 툴을 이용하여 Verilog HDL로 부동소수  곱셈기를 기술하고 성능 

평가를 하 다. 설계된 부동소수  곱셈기는 면 , 속도  력 소비에 해 분석  비교하 다. 월러스 트리

를 사용한 수정 부스 인코딩 방식의 FMAX는 33.96Mhz로 부스 인코딩보다 2.04배, 수정 부스 인코딩보다 1.62

배, 월러스 트리를 사용한 부스 인코딩보다 1.04배 빠르다. 한, 수정 부스 인코딩에 비해 월러스 트리를 이용한 

수정 부스 인코딩 방식의 면 은 24.88% 감소하고, 력소모도 2.5% 감소하 다.

ABSTRACT

With the expansion of floating-point operation requirements for fast high-speed data signal processing and logic 

operations, the speed of the floating-point operation unit is the key to affect system operation.  This paper studies the 

performance characteristics of different floating-point multiplier schemes,  completes partial product compression in the 

form of carry and sum, and then uses a carry look-ahead adder to obtain the result. Intel Quartus II CAD tool is used 

for describing Verilog HDL and evaluating performance results of the floating point multipliers. Floating point multipliers 

are analyzed and compared based on area, speed, and power consumption. The FMAX of modified Booth encoding with 

Wallace tree is 33.96 Mhz, which is 2.04 times faster than the booth encoding, 1.62 times faster than the modified booth 

encoding, 1.04 times faster than the booth encoding with wallace tree. Furthermore, compared to modified booth encoding, 

the area of modified booth encoding with wallace tree is reduced by 24.88%, and power consumption of that is reduced by 

2.5%. 
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Ⅰ. Introduction

In digital signal processors (DSP), multipliers are 

essential functional units [1-3]. Floating-point 

multipliers (FPM) have the characteristics of large 

area, long delay, and complex structure. In order to 

design a high-speed floating-point multiplier, based 

on the floating-point operation process, in order to 

reduce the number of partial products, speed up the 

sum of partial products, and then improve the 

operation speed of the multiplier, the delay, area, 

structural complexity, etc. In this regard, each 

process of the multiplication component has been 

systematically studied and fully studied and 

compared [4]. Parallel multipliers are mainly used in 

high-performance digital processors to complete 

high-speed data operations. In the process of 

in-depth research on multipliers, a series of 

optimization strategies have emerged: reducing the 

number of partial products through Booth algorithm 

and compressing tree structures such as Wallace 

Tree and Dadda Tree to achieve parallel processing 

of partial products; carry look-ahead adder (CLA,) 

and carry save adder (CSA) realize the fast sum of 

partial products of the final two rows. Among 

them, the partial product compression unit is a key 

factor that determines the speed, power, and area 

of the multiplier [5].

To improve the efficiency of floating point 

multipliers, many fast multiplication algorithms have 

been proposed and modeled. This article designs a 

32-bit floating-point multiplier. When designing a 

floating-point multiplier, part of the product 

compression unit is a key factor in determining the 

speed, power, and area of the multiplier. Some fast 

multiplication schemes that may be considered for 

implementation are Booth's algorithm, Vedic 

multiplication algorithm and array multipliers, Vedic 

multipliers and Wallace tree multipliers for study 

and comparison. Rounding is also given due 

consideration when implementing the multiplier 

design. Mainly research on modified booth and 

wallace tree, and optimizing the design of the 

compression unit of the mantissa operation part. 

First, the system structure of the multiplier is 

introduced, then the structure and logic circuit of 

the compression unit are optimized and analyzed, 

and simulation analysis is performed, and finally a 

conclusion is drawn.

Ⅱ. Floating point multiplier

The multiplier and multiplicand input to the 

multiplier designed in this article are both 32-bit 

single-precision floating-point numbers: including 

8-bit exponent bit, 1-bit sign bit, and 23-bit 

mantissa bit. The output floating point result is a 

40-bit extended precision floating point number: 

including 8 exponent bits, 1 sign bit, and 31 

mantissa bits. When performing a multiplication 

operation, first the multiplier and multiplicand 

mantissas are expanded to 25 bits: including 1 sign 

bit, 1 hidden bit, and 23 mantissa bits [6].

The mantissa digit of the product is obtained by 

multiplying the multiplier and the mantissa digit of 

the dividend and performing normalization and 

rounding, as shown in equation (1), where Normal 

is the exponent correction during the mantissa 

normalization process, and the value of Normal. It 

is equal to the value of the number of right shifts 

when normalizing the mantissa (if the mantissa is 

shifted right by 1 bit to normalize, then Norm a l 

= 1; if the mantissa is shifted right by 2 bits to 

normalize, then Normal=2, if the mantissa is 

already a normalized number, then Normal=0). The 

exponent c(exp) of the product is equal to the sum 

of the exponents of the two operands plus the 

value of the exponent correction bit, as shown in 

equation (2).

[c(man),Normal]=a(man)*b(man)      ⋯ (1)
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    c(exp)=a(exp)+b(exp)+Normal        ⋯ (2)

The mantissa operation part determines the 

speed of the entire multiplier. Booth coding is a 

common algorithm for reducing the number of 

partial products. Considering the delay, area and 

complexity of the circuit, the multiplier designed in 

this article adopts the modified Booth algorithm  

[7]. First, the mantissas of the multiplier and the 

multiplicand are modified by the Booth coding unit 

to generate 13 partial products, and then the 

Wallace tree composed of the compression units of 

the 3-2 and 4-2 compressors compresses these 13 

partial products into Carry and Sum forms. , and 

finally the product is normalized and rounded 

during CLA summation, and the exponent of the 

product is adjusted, as shown in Fig. 1.

Fig. 1 Floating point multiplier operation flow chart

The flow chart of floating point operations is 

given in Fig. 1 (taking 32-bit floating point 

operations as an example).

Step 1: Multiply the mantissa bits of the 

operands, where the input data is 24 bits and the 

output result is 48 bits;

Step 2: The exponent part of the operands is 

added, and the result is c(exp);

Step 3: Determine the mantissa situation. If it is 

0, perform step 7 to set the exponent position of 

the result to -128;

Steps 4 and 5: used to normalize the results;

If it is necessary to shift right by 1 bit for 

normalization, perform step 8, shift the mantissa to 

the right, and add 1 to the direct index. If it is 

necessary to shift right by two digits for 

normalization, perform step 9, shift the mantissa to 

the right by two digits, and add 2 to the exponent;

Step 10: Expand the mantissa result to 

extended-precision floating-point format.

Steps 6 to 11: Determine the exponent situation

If the exponent overflows, proceed to step 14. If 

the mantissa is greater than 0, set the exponent to 

the maximum positive number. If the mantissa is 

less than 0, set the exponent to the minimum 

negative number.

If the exponent underflows, execute step 15, set 

the exponent to -128, and the mantissa is 0, if the 

exponent is within the range. Then proceed to step 

16 to obtain the final result.

For floating-point multipliers, the multiplication 

algorithm and structure are the basis of its 

hardware implementation. The main steps in 

floating-point multiplication are: partial product 

generation, partial product compression, carry 

propagation addition and rounding processing. 

Reduction and compression of partial products is 

the key to distinguishing various multiplication 

algorithms. And according to existing papers, most 

of the time, area, and power consumption are 

consumed in mantissa multiplication. Therefore, 

when designing, you need to choose an appropriate 

algorithm based on delay, power, speed, area, 

complexity and other requirements.
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Ⅲ. Design of Floating Point Multiplier

The mantissa operation part consumes the most 

resources and has the longest delay, and is the key 

to the design of floating-point multipliers. The 

mantissa operation includes three parts: Booth 

coding to generate partial products, Wallace tree 

and CLA. The design of this key component is 

introduced below.

3.1 Modified Booth encoding

Since Booth encoding does not improve the 

operation speed of the multiplier, the two bits of 

each overlap check multiplication in the Booth 

algorithm are extended to three bits of each overlap 

check, that is the modified Booth algorithm. The 

modified Booth algorithm encodes each time when 

checking 3 bits, 2 bits are from the current group 

and the 3rd bit is from the lowest bit of the higher 

group. Effectively, the lowest bit of each group is 

checked 2 times. This modified Booth algorithm can 

ensure that the partial product is reduced by half, 

thereby increasing the computing speed and 

reducing the hardware complexity [8]. This 

multiplier generates partial products based on the 

modified Booth algorithm. According to the above 

formula (3), the value of the partial product can be 

calculated. For the continuous three-digit data 

obtained at one time, the lowest bit and the middle 

bit represent 1, while the highest bit represents -2, 

and the result is three bits. The sum of the 

additions, so the possible results after encoding can 

only be: {0, X, -X, 2X, -2X}. Table 1 is the partial 

product generation coding table of the modified 

Booth algorithm :

   ∙ 
   

 

 

∙ 
   

 
 



 

       


  ⋯ (3) 

Table 1. Modified Booth coding truth table

     　
 0  0  0   0

 0  0  1  +X

 0  1  0  +X

 0  1  1  +2X

 1  0  0  -2X

 1  0  1  -X

 1  1  0  -X

 1  1  1   0

For the partial product based on the modified 

Booth coding 16-bit complement form, the dot 

matrix diagram is shown in Fig. 2. The number of 

partial products obtained using this encoding 

method is approximately (n +1)/2. Adding 1 is 

because it is necessary to ensure that the partial 

product generated by the highest bit is positive, 

otherwise it needs to be supplemented for 

correction. The advantage of the modified Booth 

algorithm is that it can compress the number of 

partial products PPi to about 1/2 of the original, 

and it has nothing to do with the value of the 

multiplier. Therefore, the number of summations 

required to complete the sum of partial products is 

approximately 1/2 of the original number. This can 

not only improve the operation speed in Floating 

Point Multiplier, but also reduce the number of 

adders required. However, it should be noted that 

the operands in the modified Booth algorithm are 

expressed in two's complement, and sign extension 

is required during addition and subtraction 

operations [9].

Fig. 2 Booth coded multiplier sign bit extension
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3.2 Wallace tree structure

The first step of the Wallace tree structure is to 

group the partial multiplication integral of each 

column into a 3-bit group. In order to reduce the 

number of addends, each group uses a CSA 

component composed of a full adder; the second 

step, the results generated in the first step continue 

to be grouped by 3 bits, and the pseudo-sum and 

local carry signals of the same weight are processed 

through the CSA component, thereby reducing the 

number of addends again until there are only two 

outputs in the end;　 the third step, the final 

pseudo-sum and the local carry are added through 

the carry-pass adder to obtain the real result.

The number of operands in the above method is 

reduced by 1.5 times, and the intermediate results 

will be processed in this way until there are only 

two outputs in the end. 

There are two main structures for fast 

compression of partial products: Wallace tree and 

Dadda tree. The Wallace tree compresses as many 

partial products as possible at each stage and is 

mainly used to implement high-speed parallel 

multiplier design [10]; the Dadda tree distributes 

partial products at each stage for compression thus 

balancing circuit delay and layout complexity[3]. 

The multiplier designed in this article uses the 

Wallace tree structure to implement partial product 

parallel compression. The depth of the compression 

tree is log  levels, where N represents the 
number of partial product rows.

Fig. 3 Schematic diagram of Wallace tree connection 

structure

Fig. 3 is a schematic diagram of the Wallace 

tree connection structure, in which each rectangle 

represents a set of 4:2 compressors, and the line 

segments with arrows represent partial products 

and intermediate results to draw conclusions. The 

Wallace tree structure is theoretically the fastest 

adder tree for multiplication operations, but its 

complex connections make layout implementation 

difficult. Therefore, a 4:2 compressor is needed. 

Using a 4:2 reducer can reduce the wiring 

complexity and make the circuit structure regular 

[11]. The Wallace tree has a large area but small 

delay. In the Floating Point Multiplier design of 

this article, the Wallace tree multiplier structure is 

adopted in order to improve the operation speed.

To improve performance of the multipliers, 4:2 

compressor logic is often designed. Fig. 4 is an 

improved structure [12]. In this structure, the 

delays from the four inputs to the output are equal, 

which is convenient for layout and consumes less 

power. This structure is used in the design, and its 

logical expression is:

  ⊕⊕⊕⊕               ⋯ (4)

  ⊕⊕⊕ 
∙  ∙   

                                               ⋯ (5)

   ∙  ∙                ⋯ (6)

Fig. 4 4:2 Improved structure of compressor

Based on the above design, the circuit diagram 

of the 32-bit floating point multiplier finally 

designed in this article is shown in Fig. 5.
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Fig. 5 The modified booth_tree circuit diagram designed in 

this article

3.3. Carry look-ahead adder

The performance of the adder can be analyzed 

from the aspects of delay, power consumption, area, 

etc. The basic idea of improving the speed of the 

adder is to speed up the generation and 

transmission time of the carry signal by improving 

the carry method [13]. The characteristic of the 

carry look-ahead adder is that carry signals at all 

levels are generated simultaneously. This parallel 

approach greatly shortens the time for carry 

generation. Fig. 6 is the logic diagram of a 4-bit 

carry look-ahead adder.

Fig. 6 4-bit carry look-ahead adder

Ⅳ. Simulation results and discussion

The floating point multiplier is designed by 

Verilog HDL and verified and synthesized on Intel 

Quartus II CAD tool. Te simulation results of the 

designed floating point multiplier are shown in Fig. 

7. 

The 32-bit floating point multiplier has been 

implemented in the Quartus II CAD tool as shown 

in Figure 7. For inputs a1 = 32'h3f67e1fb; b1 = 

32'h3e0208d5; a2 = 32'h3f78e1fb; b2 = 32'h3e0299d5; 

and the output obtained is c1=32'h3deb9182; 

c2=32'h3dfdf09f;

Fig. 7 32-bit floating point multiplier logic simulation results

Fig. 8 shows performance results of speed, 

power consumption and area of the designed 

floating point multiplier using modified Booth 

encoding with the Wallace tree. And the 

performance comparison results are shown in Table 

2. We implement 4-types of floating point 

multipliers. And Booth means Booth encoding, 

Modified Booth means Modified Booth encoding, 

Booth Tree means Booth encoding using the 

Wallace tree, and Modified_booth_tree means 

Modified Booth encoding using the Wallace tree, 

respectively.
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Fig. 8 The results of area, speed, and power of the 

designed floating point multiplier

From Table 2, modified booth encoding with 

wallace tree is the best. It has a small area, low 

power consumption and the fastest computing 

speed. The FMAX of modified Booth encoding with 

Wallace tree is 33.96 Mhz, which is 2.04 times 

faster than the booth encoding, 1.62 times faster 

than the modified booth encoding, 1.04 times faster 

than the booth encoding with wallace tree. 

Furthermore, compared to modified booth encoding, 

the area of modified booth encoding with wallace 

tree is reduced by 24.88%, and power consumption 

of that is reduced by 2.5%.

Table 2. Comparison of implementation results of various 

floating point multipliers

Performance 

metrics
LE REG

FMAX

(Mhz)

Power

(mW)

booth 2397 97 16.63 171.52

modified_booth 1736 97 21 170.02

booth_tree 2375 97 32.65 175.93

modified_booth

_tree
1784 97 33.96 171.45

Ⅴ. Conclusion 

In this paper, we design a 32-bit floating point 

multiplier, uses the modified Booth encoding with 

Wallace tree to complete partial product 

compression in the form of carry and sum, and 

then uses a carry look-ahead adder to obtain the 

final result. We compared different floating point 

multipliers: Booth encoding, modified Booth 

encoding, Booth encoding with Wallace tree, and 

modified Booth encoding with Wallace tree. 

Simulation results from the FPGA CAD tool show 

that the floating-point multiplier using modified 

Booth encoding with the Wallace tree is the fastest, 

and is expected to be widely used in high-speed 

DSP applications.
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