참고문헌
- American Society of Civil Engineers (ASCE) (1984), Guidelines for the Seismic Design of Oil and Gas Pipeline Systems, Committee on Gas and Liquid Fuel Lifeline, ASCE.
- Castiglia, M., Magistris, F.S., Onori, F. and Koseki, J. (2021), "Response of buried pipelines to repeated shaking in liquefiable soils through model tests", Soil Dyn. Earthq. Eng., 143. https://doi.org/10.1016/j.soildyn.2021.106629.
- Castiglia, M., Fierro, T. and Magistris, F.S. (2020), "Pipeline performances under earthquake-induced soil liquefaction: State of the art on real observations, model tests, and numerical simulations", Shock Vib., 2020. https://doi.org/10.1155/2020/8874200.
- Castiglia, M., De Magistris, F.S. and Napolitano, A. (2018), "Stability of onshore pipelines in liquefied soils: Overview of computational methods", Geomech. Eng., 14(4), 355-366. https://doi.org/10.12989/gae.2018.14.4.355.
- Chou, J. and Lin, D. (2020), "Incorporating ground motion effects into Sasaki and Tamura prediction equations of liquefaction-induced uplift of underground structures", Geomech. Eng., 22(1), 25-33. https://doi.org/10.12989/gae.2020.22.1.025.
- Hou, Z., Cai, J. and Liu, X. (1990), "Response calculation of oil pipeline subjected to permanent ground movement induced by soil liquefaction", Proceedings of the China-Japan Symposium on Lifeline Earthquake Engineering, Beijing, China.
- Indian Institute of Technology (IITK, 2007), Guidelines for Seismic Design of Buried Pipelines. Indian: Kanpur.
- Isik, A., Unsal, N., Gurbuz, A. and Sisman, E. (2016), "Assessment of liquefaction potential of Fethiye based on spt and shear wave velocity", J. Fac. Eng. Architect. Gazi Univ., 31(4), 1027-1037. https://doi.org/10.17341/gummfd.12917.
- Istanbul Buyuksehir Belediyesi (IBB), Deprem ve Zemin Inceleme Mudurlugu (2019), Istanbul Deprem Calistayi, Istanbul, Turkiye (In Turkish).
- Kim, H., Kim, M., Baise, L.G. and Kim, B. (2020), "Local and regional evaluation of liquefaction potential index and liquefaction severity number for liquefaction-induced sand boils in pohang, South Korea", Soil Dynam. Earthq. Eng., 141(9). https://doi.org/10.1016/j.soildyn.2020.106459
- Miyamoto, J., Sassa, S., Tsurugasaki, K. and Sumida, H. (2020), "Wave-Induced liquefaction and floatation of a pipeline in a drum centrifuge", J. Waterw. Port Coast. Ocean Eng., 146(2). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000547.
- Molina-Gomez, F., Caicedo, B. and Viana da Fonseca, A. (2019), "Physical modelling of soil liquefaction in a novel micro shaking table", Geomech. Eng., 19(3), 229-240. https://doi.org/10.12989/gae.2019.19.3.229.
- Nourzadeh, D., Mortazavi, P., Ghalandarzadeh, A., Takada, S. and Ahmadi, M., (2019), "Performance assessment of the Greater Tehran Area buried gas distribution pipeline network under liquefaction", Soil Dynam. Earthq. Eng., 124, 16-34. https://doi.org/10.1016/j.soildyn.2019.05.033.
- Ozocak, A. and Tapan, M. (2014), "The influence of pore size distribution and radial consolidation properties on the liquefaction potential of silts", J. Fac. Eng. Architect.Gazi Univ., 29(1), 35-47.
- Papadimitriou, A.G., Bouckovalas, G.D., Nyman, D.J. and Valsamis, A.I. (2019), "Analysis of buried steel pipelines at watercourse crossings under liquefaction-induced lateral spreading", Soil Dyn. Earthq. Eng., 126. https://doi.org/10.1016/j.soildyn.2019.105772.
- Pisano, F., Cremonesi, M., Cecinato, F. and Vecchia, G.D. (2020), "CFD-Based framework for analysis of soil-pipeline interaction in reconsolidating liquefied sand", J. Eng. Mech., 146(10). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001846.
- Sonmezer, Y.B., Akyuz, A. and Kayabali, K. (2020), "Investigation of the effect of grain size on liquefaction potential of sands", Geomech. Eng., 20(3), 243-254. https://doi.org/10.12989/gae.2020.20.3.243.
- Sonmezer, B.Y. (2019a), "Energy-based evaluation of liquefaction potential of uniform sands", Geomech. Eng., 17(2), 145-156. https://doi.org/10.12989/gae.2019.17.2.145.
- Sonmezer, B.Y. (2019b), "Investigation of the liquefaction potential of fiber-reinforced sand", Geomech. Eng., 18(5), 503-513. https://doi.org/10.12989/gae.2019.18.5.503.
- Sudevan, P.B., Boominathan, A. and Banerjee, S., (2020), "Mitigation of liquefaction-induced uplift of underground structures by soil replacement methods", Geomech. Eng., 23(4), 365-379. https://doi.org/10.12989/gae.2020.23.4.365.
- Trautmann, C.H. and O'Rourke, T.D. (1983), "Load-displacement characteristics of a buried pipe affected by permanent earthquake ground movements", Earthquake Behavior and Safety of Oil and Gas Storage Facilities, Buried Pipelines and Equipment, PVP-77, ASME, New York, June, 254-262.
- Ulker, M. (2020), "Comparative study of numerical formulations developed for constitutive modeling of static and dynamic behavior of saturated sands: Proposal of a new hardening law", J. Fac. Eng. Architect. Gazi Univ., 35(3), 1353-1368. https://doi.org/10.17341/gazimmfd.528145.
- Valleti, D., Sivaranjani, S., Shahin, C. and Mondal, S. (2018), "Design of buried flexible pipelines during liquefaction", Int. J. Eng. Technol., 7(2). https://doi.org/10.14419/iijet.v7i2.21.12263.
- Wu, Y., Hyodo, M. and Aramaki, N. (2018), "Undrained cyclic shear characteristics and crushing behaviour of silica sand", Geomech. Eng., 14(1), 1-8. https://doi.org/10.12989/gae.2018.14.1.001.
- Xia, M. and Zhang, H. (2018), "Stress and deformation analysis of buried gas pipelines subjected to buoyancy in liquefaction zones", Energies, 11(9), 2334. https://doi.org/10.3390/en11092334.
- Yigit, A., Lav, M.A. and Gedikli, A. (2018), "Vulnerability of natural gas pipelines under earthquake effects", J. Pipeline Syst. Eng. Pract., 9(1). https://doi.org/10.1061/(ASCE)PS.1949-1204.0000295
- Yigit, A. (2015), "Buried continuous pipelines under the effects of earthquake", PhD Thesis, Istanbul Technical University, September, Istanbul, Turkey.
- Yigit, A. (2007), Gomulu Boru Hatlarinin Deprem Etkilerine karsi Davranisi, Yuksek Lisans Tezi, I.T.U. Fen Bilimleri Enstitusu, Mayis. (In Turkish).