참고문헌
- An, H. and Lee, J.H. (2022), "Deep neural network for prediction of time-history seismic response of bridges", Struct. Eng. Mech., 83(3), 401-413. https://doi.org/10.12989/sem.2022.83.3.401.
- Azar, B.F., Veladi, H., Raeesi, F. and Talatahari, S. (2020), "Control of the nonlinear building using an optimum inverse TSK model of MR damper based on modified grey wolf optimizer", Eng. Struct., 214, 110657. https://doi.org/10.1016/j.engstruct.2020.110657.
- Azizi, M., Ejlali, R.G., Ghasemi, S.A.M. and Talatahari, S. (2019), "Upgraded Whale Optimization Algorithm for fuzzy logic based vibration control of nonlinear steel structure", Eng. Struct., 192, 53-70. https://doi.org/10.1016/j.engstruct.2019.05.007.
- Bai, J., Zhang, J., Jin, S. and Wang, Y. (2021), "A simplified computational model for seismic performance evaluation of steel plate shear wall-frame structural systems", Struct., 33, 1677-1689. https://doi.org/10.1016/j.istruc.2021.05.049.
- Berradia, M., Azab, M., Ahmad, Z., Accouche, O., Raza, A. and Alashker, Y. (2022), "Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models", Struct. Eng. Mech., 83(4), 515-535. https://doi.org/10.12989/sem.2022.83.4.515.
- Charrier, M. and Ouellet-Plamondon, C.M. (2022), "Artificial neural network for the prediction of the fresh properties of cementitious materials", Cement Concrete Res., 156, 106761. https://doi.org/10.1016/j.cemconres.2022.106761.
- Chatterjee, A. and Watanabe, K. (2006), "An optimized TakagiSugeno type neuro-fuzzy system for modeling robot manipulators", Neur. Comput. Appl., 15(1), 55-61. https://doi.org/10.1007/s00521-005-0008-8.
- Chen, M.S. (1999), "A comparative study of learning methods in tuning parameters of fuzzy membership functions", IEEE Trans. Syst. Cybernet., 2, 40-44. https://doi.org/10.1109/icsmc.1999.823150.
- Cheng, J., Cai, C.S. and Xiao, R.C. (2007) "Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures", Struct. Eng. Mech., 26(3), 251-262. https://doi.org/10.12989/sem.2007.26.3.251.
- Dewan, M.W., Huggett, D.J., Liao, T.W., Wahab, M.A. and Okeil, A.M. (2016), "Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network", Mater. Des., 92, 288-299. https://doi.org/10.1016/j.matdes.2015.12.005.
- Feng, G. (2010), Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach, Taylor & Francis Group, Boca Raton.
- Hajirasouliha, I. and Doostan, A. (2010), "A simplified model for seismic response prediction of concentrically braced frames", Adv. Eng. Softw., 41(3), 497-505. https://doi.org/10.1016/j.advengsoft.2009.10.008.
- Hakim, S.J.S. and Razak, H.A. (2013), "Adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANNs) for structural damage identification", Struct. Eng. Mech., 45(6), 779-802. https://doi.org/10.12989/sem.2013.45.6.779.
- Hamidian, D., Salajegheh, E. and Salajegheh, J. (2018), "Damage detection technique for irregular continuum structures using wavelet transform and fuzzy inference system optimized by particle swarm optimization", Struct. Eng. Mech., 67(5), 457-464. https://doi.org/10.12989/sem.2018.67.5.457.
- Harooni, A.B. and Marghmaleki, A.N. (2017), "Implementing a PSO-ANFIS model for prediction of viscosity of mixed oils", Petrol. Sci. Technol., 35(2), 155-162. https://doi.org/10.1080/10916466.2016.1256899.
- Holland, J.H. (1992), "Genetic algorithms", Scientif. Am., 267(1), 66-73. https://doi.org/10.1038/scientificamerican0792-66
- Jang, J.S.R. (1993), "ANFIS: Adaptive-network-based fuzzy inference system", IEEE Trans. Syst., Man Cybernet., 23(3), 665-685. https://doi.org/10.1109/21.256541.
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95-International Conference on Neural Networks, 4, 1942-1948. https://doi.org/10.1109/ICNN.1995.488968.
- Kukolj, D. (2002), "Design of adaptive Takagi-Sugeno-Kang fuzzy models", Appl. Soft Comput., 2, 89-103. https://doi.org/10.1016/S1568-4946(02)00032-7.
- Lai, X., He, Z. and Wu, Y. (2021), "Elastic inter-story drift seismic demand estimate of super high-rise buildings using coupled flexural-shear model with mass and stiffness non-uniformities", Eng. Struct., 226, 111378. https://doi.org/10.1016/j.engstruct.2020.111378.
- Lee, S., Vo, T.P., Thai, H.T., Lee, J. and Patel, V. (2021), "Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm", Eng. Struct., 238, 112109. https://doi.org/10.1016/j.engstruct.2021.112109.
- Mamdani, E.H. (1974), "Applications of fuzzy algorithms for simple dynamic plants", Proced. IEEE, 121(12), 1585-1588.
- Miranda, B. (1999), "Approximate seismic lateral deformation demands in multistory buildings", J. Struct. Eng., 125, 417-425. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:4(417).
- Mirjalili, S., Mirjalili, S.M. and Hatamlou, A. (2016), "Multi-verse optimizer: A nature-inspired algorithm for global optimization", Neur. Comput. Appl., 27, 495-513. https://doi.org/10.1007/s00521-015-1870-7.
- Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M., Jameel, M., Hakim, S.J.S. and Zargar, M. (2013), "Application of the ANFIS model in deflection prediction of concrete deep beam", Struct. Eng. Mech., 45(3), 319-332. https://doi.org/10.12989/sem.2013.45.3.323.
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098.
- Nguyen, H.D., Dao, N.D. and Shin, M. (2021) "Prediction of seismic drift responses of planar steel moment frames using artificial neural network and extreme gradient boosting", Eng. Struct., 242, 112518. https://doi.org/10.1016/j.engstruct.2021.112518.
- Ohtori, Y., Christenson, R.E., Spencer, B.F. amd Dyke, S.J. (2004), "Benchmark control problems for seismically excited nonlinear buildings", J. Eng. Mech., 130(4), 366-385. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366).
- Prasanna, P.K., Murthy, A.R. and Srinivasu, K. (2018), "Prediction of compressive strength of GGBS based concrete using RVM", Struct. Eng. Mech., 68(6), 691-700. https://doi.org/10.12989/sem.2018.68.6.691.
- Samimifar, M., Massumi, A. and Moghadam, A.S. (2019), "A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems", Struct. Eng. Mech., 70(3), 289-301. https://doi.org/10.12989/sem.2019.70.3.289.
- Shirgir, S., Azar, B.F. and Hadidi, A. (2020), "Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model", Earthq. Struct., 18(4), 493-506. https://doi.org/10.12989/eas.2020.18.4.493.
- Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling and control", IEEE Trans. Syst., Man Cybernet., 15(1), 116-132. https://doi.org/10.1109/TSMC.1985.6313399.
- Thaler, D., Stoffel, M., Markert, B. and Bamer, F. (2021), "Machine-learning-enhanced tail end prediction of structural response statistics in earthquake engineering", Earthq. Eng. Struct. Dyn., 50(8), 2098-2114. https://doi.org/10.1002/eqe.3432.
- Thirumalaiselvi, A., Verma, M., Anandavalli, N. and Rajasankar, J. (2018), "Response prediction of laced steel-concrete composite beams using machine learning algorithms", Struct. Eng. Mech., 66(3), 399-409. https://doi.org/10.12989/sem.2018.66.3.399.
- Tijani, I.A., Lawal, A.I. and Kwon, S. (2022), "Machine learning techniques for prediction of ultimate strain of FRP-confined concrete", Struct. Eng. Mech., 84(1), 101-111. https://doi.org/10.12989/sem.2022.84.1.101.
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41, 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009.
- Woo, Z., Hoon, J. and Loganathan, G.V. (2001), "A New Heuristic Optimization Algorithm: Harmony Search", Simulation, 76(2), 60-68. https://doi.org/10.1177/003754970107600201.
- Yinfeng, D., Yingmin, L., Ming, L. and Mingkui, X. (2008), "Nonlinear structural response prediction based on support vector machines", J. Sound Vib., 311, 886-897. https://doi.org/10.1016/j.jsv.2007.09.054.
- Zadeh, L.A. (1965), "Fuzzy sets", Inform. Control, 8, 338-353. https://doi.org/10.1142/9789814261302_0021.