DOI QR코드

DOI QR Code

Comparative study of flexural stress estimation methods in concrete pavement considering tied concrete shoulder

  • Jeetendra S. Khichad (Department of Civil Engineering, Malaviya National Institute of Technology) ;
  • Rameshwar J. Vishwakarma (Department of Civil Engineering, Malaviya National Institute of Technology) ;
  • Samadhan G. Morkhade (Department of Civil Engineering, Vidya Pratishthan's Kamalnayan Bajaj Institute of Engineering & Technology) ;
  • Siddharth Mehndiratta (Department of Civil Engineering, Malaviya National Institute of Technology)
  • Received : 2023.03.13
  • Accepted : 2024.04.08
  • Published : 2024.04.25

Abstract

In this study, compared two distinct estimation methods (stress charts and regression equations) proposed by the Indian road congress design guideline (IRC:58-2015) to determine flexural stress in Jointed Plain Concrete Pavement (JPCP). The occurrence of critical flexural stresses in pavement slabs is due to the combined effects of wheel loads and temperature. These stresses depend on various factors such as material properties of concrete, soil-subgrade strength, loading, and geometric properties of the slab. In order to account for the practical variability of these factors, critical edge stresses are determined using both methods and compared considering tied concrete shoulder. IRC:58 (2015) suggests, the stresses calculated by both the procedures should provide the same results. However, when these stresses are compared for the same configurations and same loading conditions, large variations are observed. The effect of tied concrete shoulder on reduction in critical edge stress is observed. Based on the study, certain important conclusions and recommendations are presented.

Keywords

References

  1. AASHTO (1993), Guide for Design of Pavement Structures, American Association of State Highway and Transportation Officials, Washington, D.C.
  2. ACI 318-08 (2008), Building Code Requirements for Structural Concrete, ACI Committee 318, American Concrete Institute, Farmington Hills, MI, USA.
  3. ACI 325.12 (2002), Guide for Design of Jointed Concrete Pavements for Streets and Local Roads, American Concrete Institute, Farmington Hills, MI, USA.
  4. Alsaif, A., Garcia, R., Figueiredo, F.P., Neocleous, K., Christofe, A., Guadagnini, M. and Pilakoutas, K. (2019), "Fatigue performance of flexible steel fibre reinforced rubberised concrete pavements", Eng. Struct., 193, 170-183. https://doi.org/10.1016/j.engstruct.2019.05.040.
  5. Choi, S. and Won, M.C. (2009), "Design of tie bars in portland cement concrete pavement considering nonlinear temperature variations", Transp. Res. Record, 2095(1), 24-33. https://doi.org/10.3141/2095-03.
  6. Citir, N., Gopisetti, P., Ceylan, H. and Kim, S. (2024), "Evaluating the impact of overweight trucks on rigid pavement performance using AASHTOWare pavement ME design", Road Mater. Pavem. Des., 25(1), 168-185. https://doi.org/10.1080/14680629.2023.2199879.
  7. Dere, Y., Asgari, A., Sotelino, E.D. and Archer, G.C. (2006), "Failure prediction of skewed jointed plain concrete pavements using 3D FE analysis", Eng. Fail. Anal., 13(6), 898-913. https://doi.org/10.1016/j.engfailanal.2005.07.001.
  8. Donnelly, C.A., Sen, S. and Vandenbossche, J.M. (2023), "Fatigue damage prediction for superload vehicles in Pennsylvania on jointed plain concrete pavements", J. Transp. Eng., Part B: Pavem., 149(4), 04023029. https://doi.org/10.1061/jpeodx.pveng-1334.
  9. EN 1992-1-1 (2004), Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization, Brussels.
  10. Firgiansyah, E., Prihantono, P. and Daryati, D. (2022). "Comparative study of rigid pavement planning using Bina Marga 2017 and AASHTO 1993 methods", J. PenSil, 11(1), 78-91. https://doi.org/10.21009/jpensil.v11i1.24199.
  11. Hiller, J.E. and Roesler, J.R. (2010), "Simplified nonlinear temperature curling analysis for jointed concrete pavements", J. Transp. Eng., 136(7), 654-663. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000130.
  12. IRC SP: 15 (2017), Code of Practice for Construction of Jointed Plain Concrete Pavements, Indian Road Congress, New Delhi, India.
  13. IRC SP: 62 (2014), Guideline for Design and Construction of Cement Concrete Pavements for Low Volume Roads, Indian Road Congress, New Delhi, India.
  14. IRC: 101 (1998), Guidelines for Design of Continuously Reinforced Concrete Pavement with Elastic Joints, Indian Road Congress, New Delhi, India.
  15. IRC: 58 (2015), Guidelines for the Design of Plain Jointed Rigid Pavements for Highways, Indian Road Congress, New Delhi, India.
  16. IS: 456 (2000), Plain and Reinforced Concrete-Code of Practice, Bureau of Indian Standards, New Delhi, India.
  17. Katkhuda, H.N., Shatarat, N.K. and Hyari, K.H. (2017), "Effect of silica fume on mechanical properties of concrete containing recycled asphalt pavement", Struct. Eng. Mech., 62(3), 357-364. https://doi.org/10.12989/sem.2017.62.3.357.
  18. Khichad, J.S., Vishwakarma, R.J. and Ingle, R.K. (2022), "Load transfer mechanism for jointed plain concrete pavements: A review", Ind. Concrete J., 96(7), 35-45.
  19. Khichad, J.S., Vishwakarma, R.J. and Magade, S.B. (2023), "Comparison of stresses in jointed plain concrete pavement without shoulder", Mater. Today: Proc., 77, 764-772. https://doi.org/10.1016/j.matpr.2022.11.445.
  20. Kwon, J. and Seo, Y. (2023), Guidelines for Incorporation of Cement Stabilized Reclaimed Base (CSRB) in Pavement Design, FHWA-GA-23-2014, Department of Transportation, Office of Performance-Based Management and Research, Georgia.
  21. Lee, Y.H. and Carpenter, S.H. (2001), "PCAWIN program for jointed concrete pavement design", Tamkang J. Sci. Eng., 4(4), 293-300.
  22. Madhkhan, M., Azizkhani, R. and Torki, M.E. (2011), "Roller compacted concrete pavements reinforced with steel and polypropylene fibers", Struct. Eng. Mech., 40(2), 149-165. https://doi.org/10.12989/sem.2011.40.2.149.
  23. Mohammed, H., Abed, A. and Thom, N. (2024), "Modelling joint deterioration in roller compacted concrete pavement", Int. J. Pavem. Res. Technol., 17(2), 397-405. https://doi.org/10.1007/s42947-022-00243-1
  24. PCA (1984), Thickness Design for Concrete Highways and Street Pavements, Portland Cement Association.
  25. Pickett, G. and Ray, G.K. (1951), "Influence charts for concrete pavements", Trans. Am. Soc. Civil Eng., 116(1), 49-73. https://doi.org/10.1061/TACEAT.0006554
  26. Sadeghi, V. and Hesami, S. (2018), "Investigation of load transfer efficiency in jointed plain concrete pavements (JPCP) using FEM", Int. J. Pavem. Res. Technol., 11(3), 245-252. https://doi.org/10.1016/j.ijprt.2017.10.001.
  27. Sain, A., Gaur, A., Somani, P., Khichad, J.S. and Balotiya, G. (2024), "Characterization and evaluation of bamboo species for construction applications incorporating TOPSIS, AHP and VIKOR", Arab. J. Sci. Eng., 1-17. https://doi.org/10.1007/s13369-024-08797-x
  28. Setyawan, A., Yusep, M.P., Setiawan, B., Muandululman, F.F., Setiawan, A.G. and Prabowo, G.R.A. (2021), "The evaluation of deflection and tensile stress in jointed plain concrete pavement for a damaged road", J. Phys.: Conf. Ser., 1912(1), 012057. https://doi.org/10.1088/1742-6596/1912/1/012057.
  29. Shaban, A.M., Alsabbagh, A., Wtaife, S. and Suksawang, N. (2020), "Effect of pavement foundation materials on rigid pavement response", IOP Conf. Ser.: Mater. Sci. Eng., 671(1), 012085. https://doi.org/10.1088/10.1088/1757-899X/671/1/012085.
  30. Shatarat, N.K., Katkhuda, H.N., Hyari, K.H. and Asi, I. (2018), "Effect of using recycled coarse aggregate and recycled asphalt pavement on the properties of pervious concrete", Struct. Eng. Mech., 67(3), 283-290. https://doi.org/10.12989/sem.2018.67.3.283.
  31. Shi, X., Mukhopadhyay, A., Zollinger, D. and Huang, K. (2021), "Performance evaluation of jointed plain concrete pavement made with portland cement concrete containing reclaimed asphalt pavement", Road Mater. Pavem.t Des., 22(1), 59-81. https://doi.org/10.1080/14680629.2019.1616604.
  32. Surve, P.G., Ghava, J. and Solanki, U.J. (2021), "Stress comparison and comutation of cumulative fatigue damage factors by IITRIGD & Other finite element programs", Indian Highways, Indian Roads Congress, 49(12), 33-42.
  33. Swarna, S.T., Gali, R.L., Reddy, M.A. and Mehta, Y. (2024), "The analysis and design of jointed plain concrete pavements with wider slabs", Road Mater. Pavem. Des., 1-21. https://doi.org/10.1080/14680629.2024.2326542.
  34. TS 500 (2002), Requirements for Design and Construction of Reinforced Concrete Structures, Turkish Institute of Standards. (in Turkish)
  35. Vishwakarma, R.J. and Ingle, R.K. (2017), "Simplified approach for the evaluation of critical stresses in concrete pavement", Struct. Eng. Mech., 61(3), 389-396. https://doi.org/10.12989/sem.2017.61.3.389.
  36. Vishwakarma, R.J. and Ingle, R.K. (2018), "Effect of panel size and radius of relative stiffness on critical stresses in concrete pavement", Arab. J. Sci. Eng., 43, 5677-5687. https://doi.org/10.1007/s13369-018-3308-x.
  37. Vishwakarma, R.J. and Ingle, R.K. (2018), "Observation on evaluation of flexural stresses in rigid pavement", Indian Highways, Indian Road Congress, 46, 29-37.
  38. Vishwakarma, R.J. and Ingle, R.K. (2020), "Effect of non-uniform soil subgrade on critical stresses in concrete pavement", Transportation Research, Springer, Singapore, 805-817.
  39. Wang, W., Xiang, W., Li, C., Qiu, S., Wang, Y., Wang, X., Bu, S. and Bian, Q. (2024), "A case study of pavement foundation support and drainage evaluations of damaged urban cement concrete roads", Appl. Sci., 14(5), 1791. https://doi.org/10.3390/app14051791.
  40. Westergaard, H.M. (1927), "Analysis of stresses in concrete pavements due to variations of temperature", Highw. Res. Board Proc., 6, 201-215.
  41. Westergaard, H.M. (1948), "New formulas for stresses in concrete pavements of airfields", Trans. Am. Soc. Civil Eng., 113(1), 425-439. https://doi.org/10.1061/TACEAT.0006179