DOI QR코드

DOI QR Code

Mechanical properties of coconut fiber-reinforced coral concrete

  • Cunpeng Liu (School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia) ;
  • Fatimah De'nan (School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia) ;
  • Qian Mo (Department of Civil and Architectural Engineering, Guangxi Transport Vocational and Technical College) ;
  • Yi Xiao (School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia) ;
  • Yanwen Wang (Department of Civil and Architectural Engineering, Guangxi Transport Vocational and Technical College)
  • 투고 : 2022.10.22
  • 심사 : 2024.04.01
  • 발행 : 2024.04.25

초록

This study examined the changes in the mechanical properties of coral concrete under different coconut fiber admixtures. To accomplish this goal, the compressive strength, splitting tensile strength, flexural strength and elastic modulus properties of coral concrete blocks reinforced with coconut fibers were measured. The results showed that the addition of coconut fiber had little effect on the cube and axial compressive strengths. With increasing coconut fiber content, the flexural strength and splitting tensile strength of the concrete changed substantially, first by increasing and then by decreasing, with maximum increases of 36.0% and 12.8%, respectively; additionally, the addition of coconut fibers resulted in a failure type with some ductility. When the coconut fiber-reinforced coral concrete was 7 days old, it reached approximately 74% of its maximum strength. The addition of coconut fiber did not affect the early strength of the coral concrete mixed with seawater. When the amount of coconut fiber was no more than 3 kg/m3, the resulting concrete elastic modulus decreased only slightly from that of a similar concrete without coconut fiber, and the maximum decrease was 5.4%. The optimal dose of coconut fiber was 3 kg/m3 in this study.

키워드

과제정보

1. Top Program for Improving the Basic Ability of Young and Middle-aged Teachers in Guangxi Zhuang Autonomous Region (2024KY1170); 2. 2021 Teacher Research Ability Cultivation Project of Guilin University of Technology at Nanning (KJPY202103).

참고문헌

  1. Ahmad, J., Aslam, F., Martinez-Garcia, R., Ouni, M.H.E. and Khedher, K.M. (2021), "Performance of sustainable self-compacting fiber reinforced concrete with substitution of marble waste (MW) and coconut fibers (CFs)", Sci. Rep., 11(1), 23184. https://doi.org/10.1038/s41598-021-01931-x.
  2. Ahmad, W., Farooq, S.H., Usman, M., Khan, M., Ahmad, A., Aslam, F., Yousef, R.A., Abduljabbar, H.A. and Sufian, M. (2020), "Effect of coconut fiber length and content on properties of high strength concrete", Mater., 13(5), 1075. https://doi.org/10.3390/ma13051075.
  3. Ali, M., Liu, A., Sou, H. and Chouw, N. (2012), "Mechanical and dynamic properties of coconut fibre reinforced concrete", Constr. Build. Mater., 30, 814-825. https://doi.org/10.1016/j.conbuildmat.2011.12.068.
  4. Bamigboye, G., Ngene, B., Aladesuru, O., Mark, O., Adegoke, D. and Jolayemi, K. (2020), "Compressive behaviour of coconut fibre (Cocos nucifera) reinforced concrete at elevated temperatures", Fiber., 8(1), 5. https://doi.org/10.3390/fib8010005.
  5. Bu, C., Yang, H., Liu, L., Zhu, D., Sun, Y., Yu, L., Ouyang, Y., Cao, X. and Wei, Q. (2022), "Quantification of ceramsite granules in lightweight concrete panels through an image analysis technique", Mater., 15(3), 1063. https://doi.org/10.3390/ma15031063.
  6. da Silva, E.J., Marques, M.L., Velasco, F.G., Junior, C.F., Luzardo, F.M. and Tashima, M.M. (2017), "A new treatment for coconut fibers to improve the properties of cement-based composites - Combined effect of natural latex/pozzolanic materials", Sustain. Mater. Technol., 12, 44-51. https://doi.org/10.1016/j.susmat.2017.04.003.
  7. Da, B., Yu, H., Ma, H., Tan, Y., Mi, R. and Dou, X. (2016), "Chloride diffusion study of coral concrete in a marine environment", Constr. Build. Mater., 123, 47-58. https://doi.org/10.1016/j.conbuildmat.2016.06.135.
  8. Fergani, H., Di Benedetti, M., Oller, C.M., Lynsdale, C. and Guadagnini, M. (2018), "Long-term performance of GFRP bars in concrete elements under sustained load and environmental actions", Compos. Struct., 190, 20-31. https://doi.org/10.1016/j.compstruct.2018.02.002.
  9. Hashmi, A.F., Shariq, M. and Baqi, A. (2021), "An investigation into age-dependent strength, elastic modulus and deflection of low calcium fly ash concrete for sustainable construction", Constr. Build. Mater., 283, 122772. https://doi.org/10.1016/j.conbuildmat.2021.122772.
  10. Jiang, J., Luo, J., Yu, J. and Wang, Z. (2019), "Performance improvement of a fiber-reinforced polymer bar for a reinforced sea sand and seawater concrete beam in the serviceability limit state", Sensor., 19(3), 654. https://doi.org/10.3390/s19030654.
  11. Jiang, Z.Q. (2021), "Coconut fiber fracture performance of magnesium phosphate cement research", M.D. Dissertation, Guangzhou University, Guangzhou, China.
  12. Lin, Z.W. (2023), "Experimental study on properties of coconut fiber magnesium phosphate cement at low temperature", M.D. Dissertation, Guangzhou University, Guangzhou, China.
  13. Liu, B., Zhou, J., Wen, X., Hu, X. and Deng, Z. (2020), "Mechanical properties and constitutive model of carbon fiber reinforced coral concrete under uniaxial compression", Constr. Build. Mater., 263, 120649. https://doi.org/10.1016/j.conbuildmat.2020.120649.
  14. Liu, Z.Q. (2020), "Experimental study on static and dynamic properties and microscopic characteristics of coconut fiber foamed concrete", M.D. Dissertation, Guangzhou University, Guangzhou, China.
  15. Meng, J., Xu, Z., Liu, Z., Chen, S., Wang, C., Zhao, B. and Zhou, A. (2022), "Experimental study on the mechanics and impact resistance of multiphase lightweight aggregate concrete", Sustain., 14(15), 9606. https://doi.org/10.3390/su14159606.
  16. Monaldo, E., Nerilli, F. and Vairo, G. (2019), "Basalt-based fiber-reinforced materials and structural applications in civil engineering", Compos. Struct., 214, 246-263. https://doi.org/10.1016/j.compstruct.2019.02.002.
  17. Prakash, R., Thenmozhi, R., Raman, S.N. and Subramanian, C. (2020), "Characterization of eco-friendly steel fiber-reinforced concrete containing waste coconut shell as coarse aggregates and fly ash as partial cement replacement", Struct. Concrete, 21(1), 437-447. https://doi.org/10.1002/suco.201800355.
  18. Ramli, M., Kwan, W.H. and Abas, N.F. (2013), "Strength and durability of coconut-fiber-reinforced concrete in aggressive environments", Constr. Build. Mater., 38, 554-566. https://doi.org/10.1016/j.conbuildmat.2012.09.002.
  19. Ridha, N. and Prashant, K. (2019), "Studies on strength properties of coconut fibre concrete", Int. J. Res. Appl. Sci. Eng. Technol., 7(7), 404-410. https://doi.org/10.1016/j.conbuildmat.2011.12.068.
  20. Sathiparan, N., Rupasinghe, M.N. and Pavithra, B.H.M. (2017), "Performance of coconut coir reinforced hydraulic cement mortar for surface plastering application", Constr. Build. Mater., 142, 23-30. https://doi.org/10.1016/j.conbuildmat.2017.03.058.
  21. Sekar, A. and Kandasamy, G. (2022), "Optimization of coconut fiber in coconut shell concrete and its mechanical and bond properties", Mater., 11(9), 1726. https://doi.org/10.3390/ma11091726.
  22. Thanushan, K., Yogananth, Y., Sangeeth, P., Coonghe, J.G. and Sathiparan, N. (2021), "Strength and durability characteristics of coconut fibre reinforced earth cement blocks", J. Nat. Fib., 18(6), 773-788. https://doi.org/10.1080/15440478.2019.1652220.
  23. Wang, A., Lyu, B., Zhang, Z., Liu, K., Xu, H. and Sun, D. (2018), "The development of coral concretes and their upgrading technologies: A critical review", Constr. Build. Mater., 187, 1004-1019. https://doi.org/10.1016/j.conbuildmat.2018.07.202.
  24. Wang, L., Liu, C.P. and Xiong, Z.J. (2014), "Experimental study on mechanical properties of sisal fiber reinforced coral concrete", J. Henan Polytech. Univ. (Nat. Sci. Ed.), 6, 826-830. https://doi.org/10.16186/j.cnki.1673-9787.2014.06.024.
  25. Wang, L., Yi, J., Zhang, J., Chen, W. and Fu, F. (2021), "Short-term flexural stiffness prediction of CFRP bars reinforced coral concrete beams", Mater., 14(2), 467. https://doi.org/10.3390/ma14020467.
  26. Wu, H. (2022), "Coconut fiber high temperature performance of magnesium phosphate cement research", M.D. Dissertation, Guangzhou University, Guangzhou, China.
  27. Yang, Q., Sun, Y. and Peng, X. (2022), "Experimental study on mechanical properties of concrete at super-early age", Mater., 15(21), 7582. https://doi.org/10.3390/ma15217582.
  28. Yang, S., Yu, M., Dong, K. and Yang, Y. (2020), "Properties of alkali-resistant glass fiber reinforced coral aggregate concrete", Mater., 13(16), 3450. https://doi.org/10.3390/ma13163450.
  29. Zhang, G., Yang, Z., Yan, Y., Wang, M., Wu, L., Lei, H. and Gu, Y. (2021), "Experimental and theoretical prediction model research on concrete elastic modulus influenced by aggregate gradation and porosity", Sustain., 13(4), 1811. https://doi.org/10.3390/su13041811.
  30. Zheng, W. and Guangxiu, F. (2018), "Experimental study on compressive strength of new type volcanic slag lightweight aggregate concrete and its hollow block", IOP Conf. Ser. Earth Environ. Sci., 189, 032063. https://doi.org/10.1088/1755-1315/189/3/032063.