DOI QR코드

DOI QR Code

How Does Social Media's Labeling Affect Users' Believability and Engagement? The Moderating Role of Regulatory Focus

  • Received : 2023.02.20
  • Accepted : 2023.10.05
  • Published : 2024.03.31

Abstract

In the wake of the COVID-19 pandemic, unsubstantiated information concerning vaccines and the coronavirus has proliferated on various social media platforms. Consequently, we have considered viable actions to mitigate the impact of such unverified content, enabling individuals to use social media platforms more effectively and minimize any ensuing confusion. Recent measures in this area have included YouTube's practice of labeling vaccine or corona videos as authoritative when emanating from reputable organizations and Twitter's practice of flagging vaccine-related content as potentially misleading or taken out of context. This study seeks to explore how such contrasting labeling practices influence users' believability and engagement differentially, while also examining the moderating impact of regulatory focus. The results indicate that authoritative labeling positively influenced users' believability and engagement, whereas misleading labeling adversely affected users' believability and engagement. Additionally, our findings revealed that authoritative labeling has a stronger impact on promotion-focused individuals, while misleading labeling has a more pronounced effect on prevention-focused individuals. Our findings offer insights into how social media platforms can design and present information to their users, taking into account their regulatory focus.

Keywords

Acknowledgement

This research was financially supported by the Yonsei Business Research Institute, the Yonsei Signature Research Cluster Program of 2023-22-0014 and the BK21 FOUR (Fostering Outstanding Universities for Research) in 2022.

References

  1. Arnold, J. R., Reckendorf, A., and Wintersieck, A. L. (2021). Source alerts can reduce the harms of foreign disinformation. Harvard Kennedy School Misinformation Review, 1, 1-33. https://doi.org/10.37016/mr-2020-68 
  2. Avnet, T., and Higgins, E. T. (2003). Locomotion, assessment, and regulatory fit: Value transfer from "how" to "what". Journal of Experimental Social Psychology, 39(5), 525-530.  https://doi.org/10.1016/S0022-1031(03)00027-1
  3. Bollen, K. A., and Pearl, J. (2013). Eight myths about causality and structural equation models. In Handbook of Causal Analysis for Social Research (pp. 301-328). Dordrecht: Springer Netherlands. 
  4. Bin Naeem, S., and Kamel Boulos, M. N. (2021). COVID-19 misinformation online and health literacy: A brief overview. International Journal of Environmental Research and Public Health, 18(15), 8091. 
  5. Bushman, B. J. (2006). Effects of warning and information labels on attraction to television violence in viewers of different ages. Journal of Applied Social Psychology, 36(9), 2073-2078. https://doi.org/10.1111/j.0021-9029.2006.00094.x 
  6. Cai, R., and Leung, X. Y. (2020). Mindset matters in purchasing online food deliveries during the pandemic: The application of construal level and regulatory focus theories. International Journal of Hospitality Management, 91, 102677. https://doi.org/10.1016/j.ijhm.2020.102677 
  7. Cazier, J., Shao, B., and Louis, R. S. (2017). Value congruence, trust, and their effects on purchase intention and reservation price. ACM Transactions on Management Information Systems, 8(4), 1-28. https://doi.org/10.1145/3110939 
  8. Chin, W. W. (1998). The partial least squares approach for structural equation modeling. In G. A. Marcoulides (Ed.), Modern Methods for Business Research (pp. 295-336). Mahwah, NJ: Lawrence Erlbaum Associates. 
  9. Chow, C. W., and Luk, C. L. (2006). Effects of comparative advertising in high-and low-cognitive elaboration conditions. Journal of Advertising, 35(2), 55-67. https://doi.org/10.1080/00913367.2006.10639229 
  10. Demmers, J., Weltevreden, J. W., and van Dolen, W. M. (2020). Consumer engagement with brand posts on social media in consecutive stages of the customer journey. International Journal of Electronic Commerce, 24(1), 53-77. https://doi.org/10.1080/10864415.2019.1683701 
  11. Dessart, L. (2017). Social media engagement: A model of antecedents and relational outcomes. Journal of Marketing Management, 33(5-6), 375-399. https://doi.org/10.1080/0267257X.2017.1302975 
  12. Dessart, L., Veloutsou, C., and Morgan-Thomas, A. (2015). Consumer engagement in online brand communities: A social media perspective. Journal of Product & Brand Management, 24(1), 28-42. https://doi.org/10.1108/JPBM-06-2014-0635 
  13. Devine, P. G., Hirt, E. R., and Gehrke, E. M. (1990). Diagnostic and confirmation strategies in trait hypothesis testing. Journal of Personality and Social Psychology, 58(6), 952-963. https://doi.org/10.1037/0022-3514.58.6.952 
  14. Enders, A. M., Uscinski, J. E., Klofstad, C., and Stoler, J. (2020). The different forms of COVID-19 misinformation and their consequences. The Harvard Kennedy School Misinformation Review. https://doi.org/10.37016/mr-2020-48 
  15. Fitzmaurice, G. M., Laird, N. M., and Ware, J. H. (2012). Applied Longitudinal Analysis. John Wiley & Sons. 
  16. Florack, A., Keller, J., and Palcu, J. (2013). Regulatory focus in economic contexts. Journal of Economic Psychology, 38, 127-137. https://doi.org/10.1016/j.joep.2013.06.001 
  17. Geng, Z., Li, C., Bi, K., Zheng, H., and Yang, X. (2018). Motivating service employee creativity: Regulatory focus and emotional labour. Journal of Service Theory and Practice, 28(2), 228-249. https://doi.org/10.1108/JSTP-11-2016-0214 
  18. Gottfried, J., and Shearer, E. (2016). News Use Across Social Medial Platforms. Pew Research Center. 
  19. Graves, L. (2016). Deciding what's true: The rise of political fact-checking in American journalism. Columbia University Press. 
  20. Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B., and Lazer, D. (2019). Fake news on Twitter during the 2016 US presidential election. Science, 363(6425), 374-378.  https://doi.org/10.1126/science.aau2706
  21. Harsanyi, J. C. (1977). Morality and the theory of rational behavior. Social Research, 623-656. https://doi.org/10.1093/acprof:oso/9780199253609.003.0013 
  22. Heydari, A., Tavakoli, M. A., Salim, N., and Heydari, Z. (2015). Detection of review spam: A survey. Expert Systems with Applications, 42(7), 3634-3642.  https://doi.org/10.1016/j.eswa.2014.12.029
  23. Higgins, E. T. (2005). Value from regulatory fit. Current Directions in Psychological Science, 14(4), 209-213. https://doi.org/10.1111/j.0963-7214.2005.00366.x 
  24. Higgins, E. T., Friedman, R. S., Harlow, R. E., Idson, L. C., Ayduk, O. N., and Taylor, A. (2001). Achievement orientations from subjective histories of success: Promotion pride versus prevention pride. European Journal of Social Psychology, 31(1), 3-23. https://doi.org/10.1002/ejsp.27 
  25. Hirschman, E. C., and Holbrook, M. B. (1982). Hedonic consumption: Emerging concepts, methods and propositions. Journal of Marketing, 46(3), 92-101.  https://doi.org/10.1177/002224298204600314
  26. Johnson, T. J., and Kaye, B. K. (2015). Reasons to believe: Influence of credibility on motivations for using social networks. Computers in Human Behavior, 50, 544-555. https://doi.org/10.1016/j.chb.2015.04.002 
  27. Kim, A., and Dennis, A. R. (2019). Says who? The effects of presentation format and source rating on fake news in social media. MIS Quarterly, 43(3), 1025-1039.  https://doi.org/10.25300/MISQ/2019/15188
  28. Kim, A., Moravec, P. L., and Dennis, A. R. (2019). Combating fake news on social media with source ratings: The effects of user and expert reputation ratings. Journal of Management Information Systems, 36(3), 931-968. https://doi.org/10.1080/07421222.2019.1628921 
  29. Kim, A., Moravec, P. L., and Dennis, A. R. (2019). Combating fake news on social media with source ratings: The effects of user and expert reputation ratings. Journal of Management Information Systems, 36(3), 931-968. https://doi.org/10.1080/07421222.2019.1628921 
  30. Kim, M., and Kim, J. (2020). Destination authenticity as a trigger of tourists' online engagement on social media. Journal of Travel Research, 59(7), 1238-1252. https://doi.org/10.1177/0047287519878510 
  31. Kleber, J., Florack, A., and Chladek, A. (2016). How to present donations: The moderating role of numeracy in cause-related marketing. Journal of Consumer Marketing, 33(3), 153-161.  https://doi.org/10.1108/JCM-12-2014-1240
  32. Knight Foundation and Gallup. (2018). An online experimental platform to assess Trust in the Media Knight Foundation. Retrieved from https://knightfoundation.org/wp-content/uploads/2020/02/KnightFoundation_NewsLens1_Client_Report_070918_ab.pdf 
  33. Koriat, A., Lichtenstein, S., and Fischhoff, B. (1980). Reasons for confidence. Journal of Experimental Psychology: Human Learning and Memory, 6(2), 107-118. https://doi.org/10.1037/0278-7393.6.2.107 
  34. Kwon, J. E. (2022). The Impact of career plateau on job burnout in the COVID-19 pandemic: A moderating role of regulatory focus. International Journal of Environmental Research and Public Health, 19(3), 1087. https://doi.org/10.3390/ijerph19031087 
  35. Lalicic, L., Huertas, A., Moreno, A., and Jabreel, M. (2020). Emotional brand communication on Facebook and Twitter: Are DMOs successful? Journal of Destination Marketing & Management, 16, 100350. https://doi.org/10.1016/j.jdmm.2019.03.004 
  36. Leung, X. Y. (2019). Do destination Facebook pages increase fan's visit intention? A longitudinal study. Journal of Hospitality and Tourism Technology, 10(2), 2005-2018. https://doi.org/10.1108/JHTT-06-2018-0041 
  37. Lin, C. T., Chen, C. W., Wang, S. J., and Lin, C. C. (2018). The influence of impulse buying toward consumer loyalty in online shopping: a regulatory focus theory perspective. Journal of Ambient Intelligence and Humanized Computing, 1-11. 
  38. Liu, Y., and Wu, Y. F. (2018). Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks. In Proceedings of the AAAI conference on artificial intelligence (Vol. 32, No. 1). 
  39. Lorch, R. F., and Myers, J. L. (1990). Regression analyses of repeated measures data in cognitive research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 149. https://doi.org/10.1037//0278-7393.16.1.149 
  40. Lowrey, W. (2017). The emergence and development of news fact-checking sites: Institutional logics and population ecology. Journalism Studies, 18(3), 376-394.  https://doi.org/10.1080/1461670X.2015.1052537
  41. Mena, P. (2020). Cleaning up social media: The effect of warning labels on likelihood of sharing false news on Facebook. Policy & Internet, 12(2), 165-183. https://doi.org/10.1002/poi3.214 
  42. Metzger, M. J., Flanagin, A. J., Eyal, K., Lemus, D. R., and McCann, R. M. (2003). Credibility for the 21st century: Integrating perspectives on source, message, and media credibility in the contemporary media environment. Annals of the International Communication Association, 27(1), 293-335. https://doi.org/10.1080/23808985.2003.11679029 
  43. Moravec, P. L., Kim, A., and Dennis, A. R. (2020). Appealing to sense and sensibility: System 1 and system 2 interventions for fake news on social media. Information Systems Research, 31(3), 987-1006.  https://doi.org/10.1287/isre.2020.0927
  44. Moravec, P. L., Kim, A., Dennis, A. R., and Minas, R. K. (2022). Do you really know if it's true? How asking users to rate stories affects belief in fake news on social media. Information Systems Research, 33(3), 887-907. https://doi.org/10.1287/isre.2021.1090 
  45. Morrow, G., Swire-Thompson, B., Polny, J. M., Kopec, M., and Wihbey, J. P. (2022). The emerging science of content labeling: Contextualizing social media content moderation. Journal of the Association for Information Science and Technology, 73(10), 1365-1386. https://doi.org/10.1002/si.24637 
  46. Muhlberger, C., Endrejat, P., Moller, J., Herrmann, D., Kauffeld, S., and Jonas, E. (2022). Focus meets motivation: When regulatory focus aligns with approach/avoidance motivation in creative processes. Frontiers in Psychology, 13, 4945. https://doi.org/10.3389/fpsyg.2022.807875 
  47. Muntinga, D. G., Moorman, M., and Smit, E. G. (2011). Introducing COBRAs: Exploring motivations for brand-related social media use. International Journal of Advertising, 30(1), 13-46. https://doi.org/10.2501/IJA-301-013-046 
  48. Nassetta, J., and Gross, K. (2020). State media warning labels can counteract the effects of foreign misinformation. Harvard Kennedy School Misinformation Review, 1, 1-11. https://doi.org/10.37016/mr-2020-45 
  49. Nelson, J. L., and Taneja, H. (2018). The small, disloyal fake news audience: The role of audience availability in fake news consumption. New Media & Society, 20(10), 3720-3737. https://doi.org/10.1177/1461444818758715 
  50. Nezakati, H., Amidi, A., Jusoh, Y. Y., Moghadas, S., Aziz, Y. A., and Sohrabinezhadtalemi, R. (2015). Review of social media potential on knowledge sharing and collaboration in tourism industry. Procedia-social and Behavioral Sciences, 172, 120-125. https://doi.org/10.1016/j.sbspro.015.01.344 
  51. Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2(2), 175-220. https://doi.org/10.1037/1089-260.2.2.175 
  52. Pennycook, G., Bear, A., Collins, E. T., and Rand, D. G. (2020a). The implied truth effect: Attaching warnings to a subset of fake news headlines increases perceived accuracy of headlines without warnings. Management Science, 66(11), 4944-4957. https://doi.org/10.1287/mnsc.019.3478 
  53. Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., and Rand, D. G. (2020b). Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention. Psychological Science, 31(7), 770-780. https://doi.org/10.1177/095679720939054 
  54. Pentina, I., Guilloux, V., and Micu, A. (2018). Exploring social media engagement behaviors in the context of luxury brands. Journal of Advertising, 47(1), 55-69. https://doi.org/101080/00913367.2017.1405756  101080/00913367.2017.1405756
  55. Petrou, P., Demerouti, E., and Schaufeli, W. B. (2018). Crafting the change: The role of employee job crafting behaviors for successful organizational change. Journal of Management, 44(5), 1766-1792. https://doi.org/10.1177/0149206315624961 
  56. Salwen, M. B., Garrison, B., and Driscoll, P. D. (Eds.). (2004). Online news and the public. Routledge. 
  57. Silverman, C. (2016). This analysis shows how viral fake election news stories outperformed real news on Facebook. Buzzfeed News, Retrieved from https://www.buzzfeednews.com/article/craigsilverman/viral-fake-election-news-outperformed-real-news-on-facebook 
  58. Solem, B. A. A., and Pedersen, P. E. (2016). The effects of regulatory fit on customer brand engagement: An experimental study of service brand activities in social media. Journal of Marketing Management, 32(5-6), 445-468. https://doi.org/10.1080/0267257X.2016.1145723 
  59. Solvoll, M. K., and Larrson, A. O. (2020). The (non)use of likes, comments and shares of news in local online newspapers. Newspaper Research Journal, 41(2), 204-217. https://doi.org/10.1177/0739532920919826 
  60. Song, J., and Qu, H. (2019). How does consumer regulatory focus impact perceived value and consumption emotions? International Journal of Contemporary Hospitality Management, 31(1), 285-308. https://doi.org/10.1108/IJCHM-03-2017-0136 
  61. Sparks, B. A., Perkins, H. E., and Buckley, R. (2013). Online travel reviews as persuasive communication: The effects of content type, source, and certification logos on consumer behavior. Tourism Management, 39, 1-9. https://doi.org/10.1016/j.tourman.2013.03.007 
  62. Swant, M. (2017). Facebook now makes 84% of its advertising revenue from mobile. Adweek. https://www.adweek.com/performance-marketing/facebook-now-makes-84-of-its-advertising-revenue-from-mobile/
  63. Taiwar, S., Dhir, A., Kaur, P., Zafar, N., and Alrasheedy, M. (2019). Why do people share fake news? Associations between the dark side of social media use and fake news sharing behavior. Journal of Retailing and Consumer Services, 51, 72-82. https://doi.org/10.1016/j.jretconser.2019.05.026 
  64. Toreini, P., Langner, M., Maedche, A., Morana, S., and Vogel, T. (2022). Designing attentive information dashboards. Journal of the Association for Information Systems, 23(2), 521-552. https://doi.org/10.17705/1jais.00732 
  65. Tretter, S., and Diefenbach, S. (2021). The influence of regulatory focus on media choice in interpersonal conflicts. Psych, 3(1), 1-17. https://doi.org/10.3390/psych3010001 
  66. Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., Su, L., and Gao, J. (2018). EANN: Event adversarial neural networks for multi-modal fake news detection. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 849-857). 
  67. Wintersieck, A. L. (2017). Debating the truth: The impact of fact-checking during electoral debates. American Politics Research, 45(2), 304-331.  https://doi.org/10.1177/1532673X16686555
  68. Xu, H., Teo, H. H., Tan, B. C. Y., and Agarwal, R. (2010). The role of push-pull technology in privacy calculus: The case of location-based services. Journal of Management Information Systems, 26(3), 137-176. https://doi.org/10.2753/MIS0742-1222260305 
  69. Zaidi, N., Ahuja, V., and Khan, M. N. (2020). Effect of customer characteristics, content characteristics and source credibility on customer response: Developing a conceptual model for the tourism industry. Journal of Travel & Tourism Research, 16, 1-24. 
  70. Zhou, Z., Jin, X., Vogel, D. R., Fang, Y., and Chen, X. (2011). Individual motivations and demographic differences in social virtual world uses: An exploratory investigation in Second Life. International Journal of Information Management, 31, 261-271. https://doi.org/10.1016/j.ijinfomgt.2010.07.007