과제정보
The authors are indebted to all the members of the KH lab for helpful discussion.
참고문헌
- Ing-Simmons E, Rigau M, Vaquerizas JM. Emerging mechanisms and dynamics of three-dimensional genome organisation at zygotic genome activation. Curr Opin Cell Biol 2022;74:37-46. https://doi.org/10.1016/j.ceb.2021.12.004
- Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol 2018;19:436-50. https://doi.org/10.1038/s41580-018-0008-z
- Wang C, Chen C, Liu X, et al. Dynamic nucleosome organization after fertilization reveals regulatory factors for mouse zygotic genome activation. Cell Res 2022;32:801-13. https://doi.org/10.1038/s41422-022-00652-8
- Abe KI, Funaya S, Tsukioka D, et al. Minor zygotic gene activation is essential for mouse preimplantation development. Proc Natl Acad Sci USA 2018;115:E6780-8. https://doi.org/10.1073/pnas.1804309115
- Liu B, Xu Q, Wang Q, et al. The landscape of RNA Pol II binding reveals a stepwise transition during ZGA. Nature 2020;587:139-44. https://doi.org/10.1038/s41586-020-2847-y
- Core L, Adelman K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev 2019;33:960-82. https://doi.org/10.1101/gad.325142.119
- Abuhashem A, Garg V, Hadjantonakis AK. RNA polymerase II pausing in development: orchestrating transcription. Open Biol 2022;12:210220. https://doi.org/10.1098/rsob.210220
- Price DH. Transient pausing by RNA polymerase II. Proc Natl Acad Sci USA 2018;115:4810-2. https://doi.org/10.1073/pnas.1805129115
- Shao W, Zeitlinger J. Paused RNA polymerase II inhibits new transcriptional initiation. Nat Genet 2017;49:1045-51. https://doi.org/10.1038/ng.3867
- Castillo-Guzman D, Chedin F. Defining R-loop classes and their contributions to genome instability. DNA Repair (Amst) 2021;106:103182. https://doi.org/10.1016/j.dnarep.2021.103182
- Zhang X, Chiang HC, Wang Y, et al. Attenuation of RNA polymerase II pausing mitigates BRCA1-associated R-loop accumulation and tumorigenesis. Nat Commun 2017;8:15908. https://doi.org/10.1038/ncomms15908
- Zardoni L, Nardini E, Brambati A, et al. Elongating RNA polymerase II and RNA:DNA hybrids hinder fork progression and gene expression at sites of head-on replication-transcription collisions. Nucleic Acids Res 2021;49:12769-84. https://doi.org/10.1093/nar/gkab1146
- Gan W, Guan Z, Liu J, et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 2011;25:2041-56. https://doi.org/10.1101/gad.17010011
- Pohjoismaki JL, Holmes JB, Wood SR, et al. Mammalian mitochondrial DNA replication intermediates are essentially duplex but contain extensive tracts of RNA/DNA hybrid. J Mol Biol 2010;397:1144-55. https://doi.org/10.1016/j.jmb.2010.02.029
- Huertas P, Aguilera A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 2003;12:711-21. https://doi.org/10.1016/j.molcel.2003.08.010
- Yu K, Chedin F, Hsieh CL, Wilson TE, Lieber MR. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 2003;4:442-51. https://doi.org/10.1038/ni919
- Ohle C, Tesorero R, Schermann G, Dobrev N, Sinning I, Fischer T. Transient RNA-DNA hybrids are required for efficient double-strand break repair. Cell 2016;167:1001-13. https://doi.org/10.1016/j.cell.2016.10.001
- Aguilera A, Garcia-Muse T. R loops: from transcription byproducts to threats to genome stability. Mol Cell 2012;46:115-24. https://doi.org/10.1016/j.molcel.2012.04.009
- Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: the complex balancing act of R-loops in genome stability. Mol Cell 2022;82:2267-97. https://doi.org/10.1016/j.molcel.2022.04.014
- Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 2022;23:521-40. https://doi.org/10.1038/s41580-022-00474-x
- Cristini A, Groh M, Kristiansen MS, Gromak N. RNA/DNA hybrid interactome identifies DXH9 as a molecular player in transcriptional termination and R-loop-associated DNA damage. Cell Rep 2018;23:1891-905. https://doi.org/10.1016/j.celrep.2018.04.025
- Mosler T, Conte F, Longo GMC, et al. R-loop proximity proteomics identifies a role of DDX41 in transcription-associated genomic instability. Nat Commun 2021;12:7314. https://doi.org/10.1038/s41467-021-27530-y
- Mersaoui SY, Yu Z, Coulombe Y, et al. Arginine methylation of the DDX5 helicase RGG/RG motif by PRMT5 regulates resolution of RNA:DNA hybrids. EMBO J 2019;38:e100986. https://doi.org/10.15252/embj.2018100986
- Saha S, Yang X, Huang SN, et al. Resolution of R-loops by topoisomerase III-beta (TOP3B) in coordination with the DEAD-box helicase DDX5. Cell Rep 2022;40:111067. https://doi.org/10.1016/j.celrep.2022.111067
- Dou P, Li Y, Sun H, et al. C1orf109L binding DHX9 promotes DNA damage depended on the R-loop accumulation and enhances camptothecin chemosensitivity. Cell Prolif 2020;53:e12875. https://doi.org/10.1111/cpr.12875
- Chakraborty P, Huang JTJ, Hiom K. DHX9 helicase promotes R-loop formation in cells with impaired RNA splicing. Nat Commun 2018;9:4346. https://doi.org/10.1038/s41467-018-06677-1
- Yuan W, Al-Hadid Q, Wang Z, et al. TDRD3 promotes DHX9 chromatin recruitment and R-loop resolution. Nucleic Acids Res 2021;49:8573-91. https://doi.org/10.1093/nar/gkab642
- Abdelhaleem M, Maltais L, Wain H. The human DDX and DHX gene families of putative RNA helicases. Genomics 2003;81:618-22. https://doi.org/10.1016/s0888-7543(03)00049-1
- Bourgeois CF, Mortreux F, Auboeuf D. The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat Rev Mol Cell Biol 2016;17:426-38. https://doi.org/10.1038/nrm.2016.50
- Putnam AA, Jankowsky E. DEAD-box helicases as integrators of RNA, nucleotide and protein binding. Biochim Biophys Acta Gene Regul Mech 2013;1829:884-93. https://doi.org/10.1016/j.bbagrm.2013.02.002
- Fuller-Pace FV. DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res 2006;34:4206-15. https://doi.org/10.1093/nar/gkl460
- Kang HJ, Eom HJ, Kim H, Myung K, Kwon HM, Choi JH. Thrap3 promotes R-loop resolution via interaction with methylated DDX5. Exp Mol Med 2021;53:1602-11. https://doi.org/10.1038/s12276-021-00689-6
- Villarreal OD, Mersaoui SY, Yu Z, Masson JY, Richard S. Genome-wide R-loop analysis defines unique roles for DDX5, XRN2, and PRMT5 in DNA/RNA hybrid resolution. Life Sci Alliance 2020;3:e202000762. https://doi.org/10.26508/lsa.202000762
- Skourti-Stathaki K, Proudfoot NJ, Gromak N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 2011;42:794-805. https://doi.org/10.1016/j.molcel.2011.04.026
- Zhao DY, Gish G, Braunschweig U, et al. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature 2016;529:48-53. https://doi.org/10.1038/nature16469
- Yu Z, Mersaoui SY, Guitton-Sert L, et al. DDX5 resolves R-loops at DNA double-strand breaks to promote DNA repair and avoid chromosomal deletions. NAR Cancer 2020;2:zcaa028. https://doi.org/10.1093/narcan/zcaa028
- Sessa G, Gomez-Gonzalez B, Silva S, et al. BRCA2 promotes DNA-RNA hybrid resolution by DDX5 helicase at DNA breaks to facilitate their repairdouble dagger. EMBO J 2021;40:e106018. https://doi.org/10.15252/embj.2020106018
- Leszczynska KB, Dzwigonska M, Estephan H, et al. Hypoxia-mediated regulation of DDX5 through decreased chromatin accessibility and post-translational targeting restricts R-loop accumulation. Mol Oncol 2023;17:1173-91. https://doi.org/10.1002/1878-0261.13431
- Zhang C, Wang M, Li Y, Zhang Y. Profiling and functional characterization of maternal mRNA translation during mouse maternal-to-zygotic transition. Sci Adv 2022;8:eabj3967. https://doi.org/10.1126/sciadv.abj3967
- Dang Y, Li S, Zhao P, et al. The lysine deacetylase activity of histone deacetylases 1 and 2 is required to safeguard zygotic genome activation in mice and cattle. Development 2022;149:dev200854. https://doi.org/10.1242/dev.200854
- Ma P, Pan H, Montgomery RL, Olson EN, Schultz RM. Compensatory functions of histone deacetylase 1 (HDAC1) and HDAC2 regulate transcription and apoptosis during mouse oocyte development. Proc Natl Acad Sci USA 2012;109:E481-9. https://doi.org/10.1073/pnas.1118403109
- Matsubara K, Lee AR, Kishigami S, et al. Dynamics and regulation of lysine-acetylation during one-cell stage mouse embryos. Biochem Biophys Res Commun 2013;434:1-7. https://doi.org/10.1016/j.bbrc.2013.03.083
- Wang M, Chen Z, Zhang Y. CBP/p300 and HDAC activities regulate H3K27 acetylation dynamics and zygotic genome activation in mouse preimplantation embryos. EMBO J 2022;41:e112012. https://doi.org/10.15252/embj.2022112012
- Wu D, Dean J. Maternal factors regulating preimplantation development in mice. Curr Top Dev Biol 2020;140:317-40. https://doi.org/10.1016/bs.ctdb.2019.10.006
- Aoki F. Zygotic gene activation in mice: profile and regulation. J Reprod Dev 2022;68:79-84. https://doi.org/10.1262/jrd.2021-129
- Aoshima K, Inoue E, Sawa H, Okada Y. Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development. EMBO Rep 2015;16:803-12. https://doi.org/10.15252/embr.201439700
- Lee H, You SY, Han DW, et al. Dynamic change of R-loop implicates in the regulation of zygotic genome activation in mouse. Int J Mol Sci 2022;23:14345. https://doi.org/10.3390/ijms232214345
- Suo L, Zhou YX, Jia LL, et al. Transcriptome profiling of human oocytes experiencing recurrent total fertilization failure. Sci Rep 2018;8:17890. https://doi.org/10.1038/s41598-018-36275-6