DOI QR코드

DOI QR Code

Effects of Extracts from Cnidium officinale and Angelica sinensis on Bone Fusion in Mice with Femoral Fracture

당귀천궁복합물이 대퇴골 골절 동물모델에서 골 유합에 미치는 영향

  • Sang Woo Kim (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Daejeon University) ;
  • Min-Seok Oh (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Daejeon University)
  • 김상우 (대전대학교 한의과대학 한방재활의학과) ;
  • 오민석 (대전대학교 한의과대학 한방재활의학과)
  • Received : 2024.03.21
  • Accepted : 2024.04.03
  • Published : 2024.04.30

Abstract

Objectives The purpose of this study is to evaluate the fracture healing effect of extracts from Cnidium officinale and Angelica sinensis (CO/AS) in mice with femoral fracture. Methods C57BL/6 mice were randomly divided into normal, control (phospate-bufferd saline), positive control (tramadol), CO/AS extract 40 mg/kg and 80 mg/kg. By using Collier's method, all groups except normal group went through femoral fracture. Aspartate aminotransferase (AST), alanine transferase (ALT), lactate dehydrogenase (LDH), blood urea nitrogen (BUN) and creatinine were measured to evaluate the safety of CO/AS. Hematoxylin & eosin, Safranin O staining, x-ray, tensile and compressive force were conducted to assess the effect of CO/AS on fracture. Results The liver function test showed AST, ALT and LDH in CO/AS at 14th and 28th days were not significantly different compared with control group. The renal function test showed BUN in CO/AS at 14th days and BUN and creatinine in CO/AS at 28th days were significantly decreased compared with control group. The morphological & histological analysis and x-ray showed that CO/AS promoted cartilage and callus formation process compared with control group. The tensile and compressive forces test showed tensile in CO/AS 40 mg/kg and tensile & compressive forces in CO/AS 80 mg/kg were significantly increased compared with control group. Conclusions CO/AS extract showed the possibility that it promotes early fracture union and increases bone tensile and compressive strength, while does not have hepatotoxicity. In conclusion, CO/AS has a potential to promote healing of bone fracture and this study warranted the clinical usage of CO/AS at bone fracture.

Keywords

References

  1. The Korean Orthopaedic Association. Orthopaedics. 8th ed. Seoul:ChoiSin Medical Publishing Co. 2020:1484.
  2. The Korean Society of Pathologists. Pathology. 8th ed. Seoul:Komoonsa. 2017:1015-7.
  3. Yim CB, Kim YJ, Oh MS. The oriental and western medical study of fracture. Journal of Haehwa Medicine. 2007;16(1):157-66.
  4. The Society of Korean Medicine Rehabilitation. Korean rehabilitation medicine. 4th ed. Paju:Koonja Publishing. 2015:206-10.
  5. Yang GH. Anti-osteoporotic drugs and fracture healing mechanism. Journal of the Korean Fracture Society. 2011;24(2):212-6. https://doi.org/10.12671/jkfs.2011.24.2.212
  6. Chang JS. Osteoporotic fracture-medical treatment. Journal of the Korean Fracture Society. 2010;23(3):326-40. https://doi.org/10.12671/jkfs.2010.23.3.326
  7. Wang D. Oedaebiyo. 1st ed. Seoul:Sungbosa. 1975:749-50.
  8. Oh G. Uijonggeumgam. 1st ed. Seoul:Bubin Publishing Company. 2006:1250.
  9. Jo G. Seongje chongnok. Seoul:Yeo Gang Publishing Company. 1987:460-64.
  10. National Korean Medicine University Textbook Editing Board. Traditional herbology. Seoul:Younglimsa. 2011:447, 630-2.
  11. Yang Q, Populo SM, Zhang J, Yang G, Kodama H. Effect of Angelica sinensis on the proliferation of human bone cells. Clinica Chimica Acta. 2002;324(1-2):89-97. https://doi.org/10.1016/S0009-8981(02)00210-3
  12. Lee KY, Kim JH, Kim EY, Yeom M, Jung HS, Sohn Y. Water extract of Cnidii Rhizoma suppresses RANKL-induced osteoclastogenesis in RAW 264.7 cell by inhibiting NFATc1/c-Fos signaling and prevents ovariectomized bone loss in SD-rat. BMC Complementary and Alternative Medicine. 2019;19(1):207.
  13. Yoon GY. Dongui clinical oriental medicine. 1st ed. Seoul:Myungbo publishing company. 1985:391.
  14. Hang TG, Oh MS, Song TW, Kim KS. Helling effect of Sintongchugoetang water extract on tibia fractured rats. Journal of Haehwa Medicine. 1999;8(1):727-38.
  15. Nam DJ, Oh MS. The effect of Sintongchukea-tang (Shentongzhuyu-tang) on bone fusion in rib fractured rats. J Korean Med Rehabil. 2020;30(3):1-21. https://doi.org/10.18325/jkmr.2020.30.3.1
  16. Son WT, Song TW, Oh MS. Healing effect of SoongiWhalhyultang extract on tibia fractured rats. J Korean Med Rehabil. 1999;9(2):350-62.
  17. Keum DH, Kim SS. Healing effect of Bokwonhwalhyultang on tibia fractured rats. The Journal of the Korea Institute of Oriental Medical Informatics. 2002;8(1):46-66.
  18. Keum DH, Kim SS. Healing effect of pyrite on tibia fractured rats. J Korean Med Rehabil. 2002;12(2):61-90.
  19. Ahn HL, Shin MS, Kim SJ, Choi JB. Effects of neutral Eohyeol(Yuxue) herbal acupuncture and Dangkisoosan(Dangguixu-san) on fracture healing in the early stage in rats. J Korean Med Rehabil. 2007;17(1):1-16.
  20. Jeon DH, Oh MS. Healing effect of Danggwisu-san (Dangguixu-san) on femur fractured mice. J Korean Med Rehabil. 2021;31(1):1-16. https://doi.org/10.18325/jkmr.2021.31.1.1
  21. Shin WS, Parichuk K, Cha YY. Effect of Pahyeolsandongtang (Poxiesanteng-tang) in tibia fracture-induced mice. J Korean Med Rehabil. 2020;30(4):1-16. https://doi.org/10.18325/jkmr.2020.30.4.1
  22. Huh G, Oh MS. The preclinical study of Hyeolbuchugeotang (Xuefuzhuyu-tang) on bone healing in rats with rib fracture. J Korean Med Rehabil. 2020;30(3):23-44. https://doi.org/10.18325/jkmr.2020.30.3.23
  23. Ha HJ, Oh MS. Experimental study of Dohongsamul-tang (Taohongsiwu-tang) on fracture healing. J Korean Med Rehabil. 2020;30(2):47-66.
  24. Collier CD, Hausman BS, Zulqadar SH, Din ES, Anderson JM, Akkus O, Greenfield EM. Characterization of a reproducible model of fracture healing in mice using an open femoral osteotomy. Bone Reports. 2020;12:100250.
  25. Statistics Korea. 2021 Statistics on the aged [Internet]. Statistics Korea; 2021 [cited 2021 Dec 19]. Available from: URL: https://kostat.go.kr/board.es?mid=a20101000000&bid=11759&tag=&act=view&list_no=415100&ref_bid=.
  26. Health Insurance Review & Assessment Service (HIRA). Statistics on frequent disease. Hira bigdata open portal [Internet]. HIRA; 2021 [cited 2021 Dec 19]. Available from: https://opendata.hira.or.kr/op/opc/olapHifrqSickInfoTab1.do.
  27. Canale ST, Beaty JH. Campbell's operative orthopaedics. 11th ed. Philadelpia:Mosby-Elsevier. 2008:3237-86.
  28. Kwon YS, Kim HJ. Quality of life and mortality in patients with hip fractures. Hip & Pelvis. 2009;21(1):17-21.
  29. Song HK, Kim SJ, Lee JH, Yang KH. Intermittent parathyroid hormone treatment for stimulation of callus formation in elderly patients. Journal of the Korean Fracture Society. 2012;25(4):295-99. https://doi.org/10.12671/jkfs.2012.25.4.295
  30. Park CH, Shon OJ, Moon JJ, Shim BJ, Heo JH. Effects of teriparatide administration on fracture healing after intramedullary nailing in atypical femoral fractures. The Journal of the Korean Orthopaedic Association. 2016;51(3):231-7. https://doi.org/10.4055/jkoa.2016.51.3.231
  31. The Korean Fracture Society. Principles of fracture management. 1st ed. Seoul:Panmuneducation. 2013:3, 10, 40.
  32. Qian S. Byeonzhengkimoon. Seoul:Haenglim Publishing Company. 1982:311-2.
  33. Ryum YH, Oh MS, Song TW. Helling effect of Gamigungguitang and GamigungguitangGaNokyong water extract on tibia fractured rats. Journal of Haehwa Medicine. 1999;8(1):675-87.
  34. Mao X, Kong L, Luo Q, Li X, Zou H. Screening and analysis of permeable compounds in radix Angelica sinensis with immobilized liposome chromatography. Journal of Chromatography B. 2002;779(2):331-9. https://doi.org/10.1016/S1570-0232(02)00403-8
  35. Kim SA, Oh HK, Kim JY, Hong JW, Cho SI. A review of pharmacological effects of Angelica gigas, Angelica sinensis, Angelica acutiloba and their bioactive compounds. The Journal of Korean Medicine. 2011;32(4):1-24.
  36. Zhang L, Du JR, Wang J, Yu DK, Chen YS, He Y, Wang CY. Z-ligustilide extracted from Radix Angelica sinensis decreased platelet aggregation induced by ADP ex vivo and arterio-venous shunt thrombosis in vivo in rats. Yakugaku Zasshi. 2009;129(7):855-9. https://doi.org/10.1248/yakushi.129.855
  37. Baek ME, Seong GU, Lee YJ, Won JH. Quantitative analysis for the quality evaluation of active ingredients in Cnidium Rhizome. Yakhak Hoeji. 2016;60(5):227-34. https://doi.org/10.17480/psk.2016.60.5.227
  38. Wang L, Lu WG, Shi J, Zhang HY, Xu XL, Gao B, Huang Q, Li XJ, Hu YQ, Jie Q, Luo ZJ, Yang L. Anti‑osteoporotic effects of tetramethylpyrazine via promoting osteogenic differentiation and inhibiting osteoclast formation. Molecular Medicine Reports. 2017;16(6):8307-14. https://doi.org/10.3892/mmr.2017.7610
  39. Isaksson H, Grongroft I, Wilson W, van Donkelaar CC, van Rietbergen B, Tami A, Huiskes R, Ito K. Remodeling of fracture callus in mice is consistent with mechanical loading and bone remodeling theory. Journal of Orthopaedic Research. 2009;27(5):664-72. https://doi.org/10.1002/jor.20725
  40. Shin CS, Cho HY. Bone remodeling and mineralization. Journal of Korean Society of Endocrinology. 2005;20(6):543-55. https://doi.org/10.3803/jkes.2005.20.6.543
  41. Reichling JJ, Kaplan MM. Clinical use of serum enzymes in liver disease. Digestive Diseases and Sciences. 1988;33(12):1601-14. https://doi.org/10.1007/BF01535953
  42. Kang YJ. Toxic nephropathy. The Korean Journal of Medicine. 1984;27(6):632-42.
  43. Histing T, Garcia P, Holstein JH, Klein M, Matthys R, Nuetzi R, Steck R, Laschke MW, Wehner T, Bindl R, Recknagel S, Stuermer EK, Vollmar B, Wildemann B, Lienau J, Willie B, Peters A, Ignatius A, Pohlemann T, Claes L, Menger MD. Small animal bone healing models: standards, tips, and pitfalls results of a consensus meeting. Bone. 2011;49(4):591-9. https://doi.org/10.1016/j.bone.2011.07.007