과제정보
This research was financially supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the Korea-China International Cooperative R&D program. (Project No. P0014937)
참고문헌
- AISC (2010a), Seismic Provisions for Structural Steel Buildings (ANSI/AISC 341-10), Chicago, IL.
- AISC (2010b), Specification for Structural Steel Buildings (ANSI/AISC 360-10), Chicago, IL.
- Alavi, S.A., Mohammadimehr, M. and Ejtahed, S.H. (2021), "Vibration analysis and control of micro porous beam integrated with FG-CNT distributed piezoelectric sensor and actuator", Steel Compos. Struct., 41(4), 595-608. https://doi.org/10.12989/scs.2021.41.4.595.
- Amini, F., Bitaraf, M., Nasab, M.S.E. and Javidan, M.M. (2018), "Impacts of soil-structure interaction on the structural control of nonlinear systems using adaptive control approach", Eng. Struct., 157, 1-13. https://doi.org/10.1016/J.ENGSTRUCT.2017.11.071.
- Anoushehei, M., Daneshjoo, F., Mahboubi, S. and Khazaeli, S. (2017), "Experimental investigation on hysteretic behavior of rotational friction dampers with new friction materials", Steel Compos. Struct., 24(2), 239-248. https://doi.org/10.12989/scs.2017.24.2.239.
- Bae, J., Lee, C.H., Park, M., Alemayehu, R.W., Ryu, J., Kim, Y. and Ju, Y.K. (2020), "Cyclic loading performance of radius-cut double coke-shaped strip dampers", Materials, 13(18), 3920. http://dx.doi.org/10.3390/ma13183920.
- Beiraghi, H. and Homa F. (2021), "Performance based assessment of shape memory alloy braces combined with buckling restrained braces in frames subjected to near field earthquakes", Steel Compos. Struct. 41(3), 353-367. https://doi.org/10.12989/scs.2021.41.3.353.
- Bitaraf, M., Ozbulut, O.E., Hurlebaus, S. and Barroso, L. (2010), "Application of semi-active control strategies for seismic protection of buildings with MR dampers", Eng. Struct., 32(10), 3040-3047. https://doi.org/10.1016/j.engstruct.2010.05.023.
- Boardman, P.R., Wood, B.J. and Carr, A.J. (1983), "Union house: A cross braced structure with energy dissipators", Bull. New Zealand Soc. Earthq. Eng., 16(2), 83-97. https://doi.org/10.5459/bnzsee.16.2.83-97
- De la Llera, J.C., Esguerra, C. and Almazan, J.L. (2004), "Earthquake behavior of structures with copper energy dissipators", Earthq. Eng. Struct. Dyn., 33(3), 329-358. https://doi.org/10.1002/eqe.354.
- Dolce, M., Donatello, C. and Roberto, M. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct. Dyn., 29(7), 945-68. https://doi.org/10.1002/1096-9845(200007)29:7<945::AIDEQE958>3.0.CO;2-%23.
- Eldin, M.N., Kim, J. and Kim, J. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633.
- Esfandiyari, R., Nejad, S.M., Marnani, J.A., Mousavi, S.A. and Zahrai, S.M. (2020), "Seismic behavior of structural and nonstructural elements in RC building with bypass viscous dampers", Steel Compos. Struct., 34(4), 487-497. https://doi.org/10.12989/scs.2020.34.4.487.
- Filippou, F.C., Popov, E.P. and Bertero, V.V. (1983), Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints.
- Foti, D., Diaferio, M. and Nobile, R. (2010), "Optimal design of a new seismic passive protection device made in aluminium and steel", Struct. Eng. Mech., 35(1), 119-122. https://doi.org/10.12989/10.12989/sem.2010.35.1.119.
- Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
- He, J., Vasdravellis, G. and Wang, S. (2021), "Circular perforated steel yielding demountable shear connector for sustainable precast composite floors", Steel Compos. Struct., 39(6), 701-721. https://doi.org/10.12989/scs.2021.39.6.701.
- Javidan, M.M. and Jinkoo, K. (2020), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37(3), 259-272. https://doi.org/10.12989/scs.2020.37.3.259.
- Kafi, M.A. and Nik-Hoosh, K. (2019), "The geometric shape effect of steel slit dampers in their behavior", Mag. Civil Eng., 87(3). 3017. https://doi.org/10.18720/MCE.87.1.
- Kang, H., Adane, M., Chun, S. and Kim, J. (2022), "Development of a seismic retrofit system made of steel frame with vertical slits", Steel Compos. Struct., 44(2), 269-280.
- Lee, J. and Jinkoo, K. (2015), "Seismic performance evaluation of moment frames with slit-friction hybrid dampers", Earthq. Struct., 9(6), 1291-1311. https://doi.org/10.12989/eas.2015.9.6.1291.
- Lignos, D.G. and Krawinkler, H. (2011), "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading", J. Struct. Eng., 137(11), 1291-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376.
- Lor, H.A., Izadinia, M. and Memarzadeh, P. (2019), "Experimental evaluation of steel connections with horizontal slit dampers", Steel Compos. Struct., 32(1), 79.
- Martinez-Romero, E. (1993), "Experiences on the use of supplementary energy dissipators on building structures", Earthq. Spectra, 9(3), 581-625. https://doi.org/10.1193/1.1585731.
- McKenna, F., Fenves, G.L. and Scott, S.H. (2000), Open System for Earthquake Engineering Simulation, University of California, Berkeley, CA.
- Menegotto, M. (1973), "Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending", Proc. of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, 15-22.
- Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2020), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36(2), 163-177. https://doi.org/10.12989/scs.2020.36.2.163.
- Naeem, A. and Jinkoo, K. (2018), "Seismic retrofit of a framed structure using damped cable systems", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/SCS.2018.29.3.287.
- Naeem, A., Mohamed Nour, E., Jinkoo, K. and Joowoo, K. (2017), "'Seismic performance evaluation of a structure retrofitted using steel slit dampers with shape memory alloy bars", Int. J. Steel Struct., 17(4), 1627-1638. https://doi.org/10.1007/s13296-017-1227-4.
- Nasab, M.S.E. and Jinkoo, K. (2022), "Fuzzy analysis of a viscoelastic damper in seismic retrofit of structures", Eng. Struct., 250, 113473. https://doi.org/10.1016/j.engstruct.2021.113473.
- Nasab, M.S.E. and Kim, J. (2020), "Seismic retrofit of structures using hybrid steel slit-viscoelastic dampers", J. Struct. Eng., 146(11), 04020238.
- Nasab, M.S.E., Chun, S. and Kim, J. (2022b), "Seismic retrofit system made of viscoelastic polymer composite material and thin steel plates", Steel Compos. Struct., 43(2), 153-164.
- Nasab, M.S.E., Guo, Y.Q. and Kim, J. (2022a), "Seismic retrofit of a soft first-story building using viscoelastic dampers considering inherent uncertainties", J. Build. Eng., 47, 103866.
- Noureldin, M., Ahmed, S. and Kim, J. (2021), "Self-centering steel slotted friction device for seismic retrofit of beam-column joints", Steel Compos. Struct., 41(1), 13-30. https://doi.org/https://doi.org/10.12989/scs.2021.41.1.013.
- NourEldin, M., Naeem, A. and Kim, J. (2019), "Life-cycle cost evaluation of steel structures retrofitted with steel slit damper and shape memory alloy-based hybrid damper", Adv. Struct. Eng., 22(1), 3-16. https://doi.org/10.1177/1369433218773487
- Oncu-Davas, S. and Alhan, C. (2019), "Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes", Smart Struct. Syst., 23(3), 227-242. https://doi.org/10.12989/sss.2019.23.3.227.
- Park, J., Lee, J. and Kim, J. (2012), "Cyclic test of buckling restrained braces composed of square steel rods and steel tube", Steel Compos. Struct., 13(5), 423-436. https://doi.org/10.12989/scs.2012.13.5.423.
- PEER (2014), PEER NGA Database, PEER Ground Motion Database.
- Pekelnicky, R., Engineers, S.D., Chris Poland, S.E. and Engineers, N.D. (2012), "ASCE 41-13: Seismic evaluation and retrofit rehabilitation of existing buildings", Proceedings of the SEAOC.
- Perry, C.L., Fierro, E.A., Sedarat, H. and Scholl, R.E. (1993), "Seismic upgrade in San Francisco using energy dissipation devices", Earthq. Spectra, 9(3), 559-579. https://doi.org/https://doi.org/10.1193/1.1585730.
- Raychowdhury, P. (2008), Nonlinear Winkler-based Shallow Foundation Model for Performance Assessment of Seismically Loaded Structures. eScholarship, University of California, USA
- Rodgers, G.W., Chase, J.G., Mander, J.B., Leach, N.C., Denmead, C.S., Cleeve, L. and Heaton, D. (2020), "High force-to-volume extrusion dampers and shock absorbers for civil infrastructure", In Progress in Mechanics of Structures and Materials, 415-420. CRC Press.
- Shahri, S.F. and Mousavi, S.R. (2018), "Seismic behavior of beam-to-column connections with elliptic slit dampers", Steel Compos. Struct., 26(3), 289-301. https://doi.org/https://doi.org/10.12989/scs.2018.26.3.289.
- Tena-Colunga, A. (1997), "Mathematical modelling of the ADAS energy dissipation device", Eng. Struct., 19(10), 811-821. https://doi.org/https://doi.org/10.1016/S0141-0296(97)00165-X.
- Williams, M.S. and Albermani, F. (2003), Monotonic and Cyclic Tests on Shear Diaphragm Dissipators for Steel Frames.
- Xia, C. and Hanson, R.D. (1992), "Influence of ADAS element parameters on building seismic response", J. Struct. Eng., 118(7), 1903-1918. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1903).
- Xiang, Y. and Hua-Rong, X. (2021), "Probabilistic effectiveness of visco-elastic dampers considering earthquake excitation uncertainty and ambient temperature fluctuation", Eng. Struct., 226, 111379. https://doi.org/10.1016/j.engstruct.2020.111379.
- Xu, Z.-D., Ge, T. and Liu, J. (2020), "Experimental and theoretical study of high-energy dissipation viscoelastic dampers based on acrylate-rubber matrix", J. Eng. Mech., 146(6), 4020057s. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001802.
- Yousef-beik, S.M.M., Veismoradi, S., Zarnani, P. and Quenneville, P. (2020), "A new self-centering brace with zero secondary stiffness using elastic buckling", J. Construct. Steel Res., 169, 106035. https://doi.org/10.1016/j.jcsr.2020.106035.