DOI QR코드

DOI QR Code

Research on three-point bending fatigue life and damage mechanism of aluminum foam sandwich panel

  • Wei Xiao (School of Architecture Engineering of Chang' an University) ;
  • Huihui Wang (Key Laboratory of Road Construction Technology & Equipment, Chang' an University) ;
  • Xuding Song (Key Laboratory of Road Construction Technology & Equipment, Chang' an University)
  • Received : 2023.10.17
  • Accepted : 2024.02.28
  • Published : 2024.04.10

Abstract

Aluminum foams sandwich panel (AFSP) has been used in engineering field, where cyclic loading is used in most of the applications. In this paper, the fatigue life of AFSP prepared by the bonding method was investigated through a three-point bending test. The mathematical statistics method was used to analyze the influence of different plate thicknesses and core densities on the bending fatigue life. The macroscopic fatigue failure modes and damage mechanisms were observed by scanning electron microscopy (SEM). The results indicate that panel thickness and core layer density have a significant influence on the bending fatigue life of AFSP and their dispersion. The damage mechanism of fatigue failure to cells in aluminum foam is that the initial fatigue crack begins the cell wall, the thinnest position of the cell wall or the intersection of the cell wall and the cell ridge, where stress concentrations are more likely to occur. The fatigue failure of aluminum foam core usually starts from the semi-closed unit of the lower layer, and the fatigue crack propagates layer by layer along the direction of the maximum shear stress. The results can provide a reference for the practical engineering design and application of AFSP.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation Committee of China under Grant No. 51805043, the Natural Science Basic Research Program of Shaanxi No.2022JQ277 and the Central Special Fund for scientific research in colleges and universities NO.300102282110.

References

  1. Albooyeh, A., Soleymani, P. and Taghipoor, H. (2022), "Evaluation of the mechanical properties of hydroxyapatite-silica aerogel/epoxy nanocomposites: Optimizing by response surface approach", J. Mech. Behav. Biomed. Mater., 136, 105513. https://doi.org/10.1016/j.jmbbm.2022.105513.
  2. Deshpande, V.S., Cote, F. and Fleck, N.A. (2007), "Fatigue performance of sandwich beams with a pyramidal core", Int. J. Fatigue, 29(8), 1402-1412. https://doi.org/10.1016/j.ijfatigue.2006.11.013.
  3. Dogan, A. (2021), "Low-velocity impact, bending, and compression response of carbon fiber/epoxy-based sandwich composites with different types of core materials", J. Sandw. Struct. Mater., 23(6), 1956-1971. https://doi.org/10.1177/1099636220908862.
  4. Harte, A.M., Fleck, N.A. and Ashby, M.F. (2001), "The fatigue strength of sandwich beams with an aluminium alloy foam core", Int. J. Fatigue, 23(6), 499-507. https://doi.org/10.1016/S0142-1123(01)00012-3.
  5. Ma, M.Z., Yao, W.X., Jiang, W., Jin, W., Chen, Y. and Li, P. (2020), "Fatigue behavior of composite sandwich panels under three point bending load", Polym. Test, 91. https://doi.org/10.1016/j.polymertesting.2020.106795.
  6. Muzamil, H., Rafiullah, K. and Naseem, A. (2019), "Experimental and computational studies on honeycomb sandwich structures under static and fatigue bending load", J. King Saud. Univ. Sci., 31, 222-229. https://doi.org/10.1016/j.jksus.2018.05.012.
  7. Nemat-Nasser, S., Kang, W.J., McGee, J.D., Guo, W.G. and Isaacs, J.B. (2007), "Experimental investigation of energy-absorption characteristics of components of sandwich structures", Int. J. Impact Eng., 34(6), 1119-1146. https://doi.org/10.1016/j.ijimpeng.2006.05.007.
  8. Nesic, S., Krupp, U. and Michels, W. (2014), "Monotonic and cyclic loading behavior of closed-cell aluminum foams and sandwich structures", Procedia Mater. Sci., 4, 269-273. https://doi.org/10.1016/j.mspro.2014.07.556.
  9. Palano, F., Nobile, R., Dattoma, V. and Panella, F.W. (2013), "Fatigue behaviour of aluminium foam sandwiches", Fatigue Fract. Eng. Mater. Struct., 36(12), 1274-1287. https://doi.org/10.1111/ffe.12063.
  10. Rajaneesh, A., Zhao, Y., Chai, G.B. and Sridhar, I. (2018), "Flexural fatigue life prediction of cfrp-nomex honeycomb sandwich beams", Compos. Struct., 192, 225-231. https://doi.org/10.1016/j.compstruct.2018.02.067.
  11. Ren, P. (2014), "Research on impact damage of laminates and fatigue life of impacted laminates", Master Dissertation; Harbin Institute of Technology, Harbin, China.
  12. Roszkos, C.S., Bocko, J., Kula, T. and Sarlosi, J. (2019), "Static and dynamic analyses of aluminum foam geometric models using the homogenization procedure and the fea", Compos. B. Eng., 171, 361-374. https://doi.org/10.1016/j.compositesb.2019.03.074.
  13. Sha, J.B., Yip, T.H. and Wong, S.K.M. (2006), "In situ surface displacement analysis of fracture and fatigue behaviour under bending conditions of sandwich beam consisting of aluminium foam core and metallic face sheets", Mater. Sci. Technol., 22(1), 51-60. https://doi.org/10.1179/174328406X79270.
  14. Sun, G.Y., Huo, X.T., Wang, H.X., Hazell, P.J. and Li, Q. (2021), "On the structural parameters of honeycomb-core sandwich panels against low-velocity impact", Compos. B. Eng., 216. https://doi.org/10.1016/j.compositesb.2021.108881.
  15. Taghipoor, H. and Noori, M.D. (2018), "Experimental and numerical study on energy absorption of lattice-core sandwich beam", Steel Compos. Struct., 27(2), 135-147. https://doi.org/10.12989/scs.2018.27.2.135.
  16. Taghipoor, H. and Nouri, M.D. (2019), "Experimental and numerical investigation of lattice core sandwich beams under low-velocity bending impact", J. Sandw. Struct. Mater., 21(6), 2154-2177. https://doi.org/10.1177/1099636218761315.
  17. Taghipoor, H. and Nouri, M.D. (2020), "Axial crushing and transverse bending responses of sandwich structures with lattice core", J. Sandw. Struct. Mater., 22(3), 572-598. https://doi.org/10.1177/1099636218761321.
  18. Taghipoor, H., Eyvazian, A., Musharavati, F., Sebaey, T.A. and Ghiaskar, A. (2020), "Experimental investigation of the three-point bending properties of sandwich beams with polyurethane foam-filled lattice cores", Struct., 28, 424-432. https://doi.org/10.1016/j.istruc.2020.08.082.
  19. Wang, H.H., Song, X.D., Zhao, M.K. and Wan, Y.P. (2023), "Low velocity impact penetration response of foam core sandwich panels with face sheets", Int. J. Impact Eng., 173. https://doi.org/10.1016/j.ijimpeng.2022.104461.
  20. Wei, L. and Sun, Y. (2010), "Study on bubble's stability in process of preparing foam aluminum by powder metallurgy method", International Conference on Advances in Materials and Manufacturing Processes, Shenzhen, China, December.
  21. Yan, C. and Song, X.D. (2017), "Bending behavior of aluminum foam sandwich with 304 stainless steel face-sheet", Steel Compos. Struct., 25(3), 327-335. https://doi.org/10.12989/scs.2017.25.3.327.
  22. Yan, C., Song, X.D., Jing, C.H. and Feng, S. (2017), "Mechanical properties and deformation mechanism of industrial aluminum foams", Mater. Rev., 31(9B), 92-96, https://doi.org/10.11896/j.issn.1005-023X.2017.018.019.
  23. Yan, C., Song, X.D., Jing, C.H. and Feng, S. (2018), "Effects of epoxy resin liquidity on the mechanical properties of aluminum foam sandwich", J. Adhes. Sci. Technol., 32(6), 673-691. https://doi.org/10.1080/01694243.2017.1375173.
  24. Yan, C., Song, X.D., Zhu, H., Jing, C.H. and Feng, S. (2018), "Flexural response of carbon fiber reinforced aluminum foam sandwich", J. Compos. Mater., 52(14), 1887-1897. https://doi.org/10.1177/0021998317735166.
  25. Yan, C., Wang J. and Song, X.D. (2020), "Fatigue behavior and damage mechanism of aluminum foam sandwich with carbon-fiber face-sheets", J. Mech. Sci. Technol., 34(6), 1119-1127. https://doi.org/10.1007/s12206-020-0213-5.
  26. Yao, C., Hu, Z.F., Mo, F. and Wang, Y. (2019), "Fabrication and fatigue behavior of aluminum foam sandwich panel via liquid diffusion welding method", Metals, 9(5), 582. https://doi.org/10.3390/met9050582.
  27. Yao, J.B. and Sha, J.B. (2007), "Study on bending fatigue behavior of composite plate with foam aluminum core", J. Mater. Sci. Eng., 25(1), 79-83. https://doi.org/10.2514/1.26230.
  28. Yao, Y.Q. (2015), "Study on mechanical behavior of foam aluminum sandwich beam under reciprocating load", Master Dissertation; Southeast University, Nanjing, China.
  29. Zettl, B., Mayer, H., Stanzl-Tschegg, S.E. and Degischer, H.P. (2000), "Fatigue properties of aluminum foams at high numbers of cycles", Mater. Sci. Eng., A, 292(1), 1-7. https://doi.org/10.1016/S0921-5093(00)01033-9.
  30. Zhang, J.X., Qin, Q.H., Chen, S.J., Yang, Y., Ye, Y., Xiang, C.P. and Wang, T.J. (2020), "Low-velocity impact of multilayer sandwich beams with metal foam cores: Analytical, experimental, and numerical investigations", J. Sandw. Struct. Mater., 22(3), 626-657. https://doi.org/10.1177/1099636218759827.
  31. Zhang, Z.J., Zhang, Q.C., Shi, X.B., Zhang, W.J. and Jin, F. (2018), "Effects of adhesive parameters on out-of-plane compression and compression fatigue response of adhesively bonded sandwiches with pyramidal core", Compos. Struct., 206, 131-139. https://doi.org/10.1016/j.compstruct.2018.08.004.
  32. Zhao, M.D., Fan, X.L. and Wang, T.J. (2016), "Fatigue damage of closed-cell aluminum alloy foam: Modeling and mechanisms", Int. J. Fatigue, 87, 257-265. https://doi.org/10.1016/j.ijfatigue.2016.02.009.
  33. Zhu, Y.F. and Sun, Y.G. (2020), "Dynamic response of foam core sandwich panel with composite facesheets during low-velocity impact and penetration", Int. J. Impact Eng., 139. https://doi.org/10.1016/j.ijimpeng.2020.103508.
  34. Zu, G.Y., Lu, R.H., Li, X.B., Zhong, Z.Y., Ma, X.J., Han, M.B. and Yao, G.C. (2013), "Three-point bending behavior of steel panel aluminum foam sandwich panels", Trans. Nonferrous Met. Soc. China, 23(9), 2491-2495. https://doi.org/10.1016/S1003-6326(13)62759-4.