DOI QR코드

DOI QR Code

Application of the optimal fuzzy-based system on bearing capacity of concrete pile

  • Received : 2023.10.20
  • Accepted : 2024.04.03
  • Published : 2024.04.10

Abstract

The measurement of pile bearing capacity is crucial for the design of pile foundations, where in-situ tests could be costly and time needed. The primary objective of this research was to investigate the potential use of fuzzy-based techniques to anticipate the maximum weight that concrete driven piles might bear. Despite the existence of several suggested designs, there is a scarcity of specialized studies on the exploration of adaptive neuro-fuzzy inference systems (ANFIS) for the estimation of pile bearing capacity. This paper presents the introduction and validation of a novel technique that integrates the fire hawk optimizer (FHO) and equilibrium optimizer (EO) with the ANFIS, referred to as ANFISFHO and ANFISEO, respectively. A comprehensive compilation of 472 static load test results for driven piles was located within the database. The recommended framework was built, validated, and tested using the training set (70%), validation set (15%), and testing set (15%) of the dataset, accordingly. Moreover, the sensitivity analysis is performed in order to determine the impact of each input on the output. The results show that ANFISFHO and ANFISEO both have amazing potential for precisely calculating pile bearing capacity. The R2 values obtained for ANFISFHO were 0.9817, 0.9753, and 0.9823 for the training, validating, and testing phases. The findings of the examination of uncertainty showed that the ANFISFHO system had less uncertainty than the ANFISEO model. The research found that the ANFISFHO model provides a more satisfactory estimation of the bearing capacity of concrete driven piles when considering various performance evaluations and comparing it with existing literature.

Keywords

References

  1. Abolghasemi, S., Wierschem, N.E. and Denavit, M.D. (2024), "Impact of strongback on structure with varying damper and stiffness irregularity arrangements", J. Construct. Steel Res., 213, 108333. https://doi.org/10.1016/j.jcsr.2023.108333.
  2. Aghayari Hir, M., Zaheri, M. and Rahimzadeh, N. (2023), "Prediction of rural travel demand by spatial regression and artificial neural network methods (Tabriz County)", J. Transport. Res., 20(4), 367-386. https://doi.org/10.22034/TRI.2022.312204.2970.
  3. Arjomandnia, R., Ilbeigi, M., Kazemidemneh, M. and Hashemi, A.N. (2023), "Renovating buildings by modelling energy-CO2 emissions using particle swarm optimization and artificial neural network (case study: Iran)", Indoor Built Environ., 32(8). https://doi.org/10.1177/1420326X231151244.
  4. Azizi, M., Talatahari, S. and Gandomi, A.H. (2022), "Fire Hawk Optimizer: A novel metaheuristic algorithm", Artificial Intell. Rev., 1-77. https://doi.org/10.1007/s10462-022-10173-w.
  5. Baginska, M. and Srokosz, P.E. (2019), "The optimal ANN Model for predicting bearing capacity of shallow foundations trained on scarce data", KSCE J. Civil Eng., 23, 130-137. https://doi.org/10.1007/s12205-018-2636-4
  6. Behar, O., Khellaf, A. and Mohammedi, K. (2015), "Comparison of solar radiation models and their validation under Algerian climate-The case of direct irradiance", Energy Conversion Manage., 98, 236-251. https://doi.org/10.1016/j.enconman.2015.03.067
  7. Benali, A., Hachama, M., Bounif, A., Nechnech, A. and Karray, M. (2021), "A TLBO-optimized artificial neural network for modeling axial capacity of pile foundations", Eng. Comput., 37(1), 675-684. https://doi.org/10.1007/s00366-019-00847-5.
  8. Benali, A., Nechnech, A. and Bouafia, A. (2013), "Bored pile capacity by direct SPT methods applied to 40 case histories", Civil Environ. Res., 5, 118-122.
  9. Benesty, J., Chen, J., Huang, Y. and Cohen, I. (2009), "Pearson correlation coefficient", In Noise Reduction in Speech Processing, 1-4. https://doi.org/10.1007/978-3-642-00296-0_5.
  10. Bouafia, A. and Derbala, A. (2002), "Assessment of SPT-based method of pile bearing capacity-analysis of a database", Proceedings of the International Workshop on Foundation Design Codes and Soil Investigation in View of International Harmonization and Performance-Based Design, 369-374.
  11. Cao, M.-T., Nguyen, N.-M. and Wang, W.-C. (2022), "Using an evolutionary heterogeneous ensemble of artificial neural network and multivariate adaptive regression splines to predict bearing capacity in axial piles", Eng. Struct., 268, 114769. https://doi.org/10.1016/j.engstruct.2022.11476.
  12. Chen, W., Sarir, P., Bui, X.-N., Nguyen, H., Tahir, M.M. and Jahed Armaghani, D. (2020), "Neuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pile", Eng. Comput., 36(3), 1101-1115. https://doi.org/10.1007/s00366-019-00752-x.
  13. Cheng, M.-Y., Cao, M.-T. and Tsai, P.-K. (2021), "Predicting load on ground anchor using a metaheuristic optimized least squares support vector regression model: A Taiwan case study", J. Comput. Des. Eng., 8(1), 268-282. https://doi.org/10.1093/jcde/qwaa077.
  14. Dawei, Y., Bing, Z., Bingbing, G., Xibo, G. and Razzaghzadeh, B. (2023), "Predicting the CPT-based pile set-up parameters using HHO-RF and PSO-RF hybrid models", Struct. Eng. Mech., 86(5), 673-686. https://doi.org/10.12989/sem.2023.86.5.673.
  15. Dutta, R.K., Rani, R. and Gnananandarao, T. (2018), "Prediction of ultimate bearing capacity of skirted footing resting on sand using artificial neural networks", J. Soft Comput. Civil Eng., 2(4), 34-46. https://doi.org/10.22115/SCCE.2018.133742.1066.
  16. Ebad, M. and Vahidi, B. (2022), "In silico analysis of stem cells mechanical stimulations for mechnoregulation toward cardiomyocytes", Int. J. Eng., 35(11), 2229-2237. https://doi.org/10.5829/IJE.2022.35.11B.18
  17. Esmaeili-Falak, M. and Sarkhani Benemaran, R. (2023), "Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles", Geomech. Eng., 32(6), 583-600. https://doi.org/10.12989/gae.2023.32.6.583
  18. Esmaeili-Falak, M. and Sarkhani Benemaran, R. (2024), "Application of optimization-based regression analysis for evaluation of frost durability of recycled aggregate concrete", Struct. Concrete, 25(1), 716-737. https://doi.org/10.1002/suco.202300566.
  19. Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Regions Eng., 33(3), 04019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
  20. Faramarzi, A., Heidarinejad, M., Stephens, B. and Mirjalili, S. (2020), "Equilibrium optimizer: A novel optimization algorithm", Knowledge-Based Syst., 191, 105190. https://doi.org/10.1016/j.knosys.2019.105190.
  21. Ghahremanlou, A., Saffarzadeh, M., Naderan, A. and Javanshir, H. (2022), "Investigating the impact of accessibility on land use and its role in environmental pollution in Tehran", Int. J. Transport. Eng., 9(4), 833-854.
  22. Gnananandarao, T., Dutta, R.K. and Khatri, V.N. (2017), "Artificial neural networks based bearing capacity prediction for square footing resting on confined sand", In Indian Geotechnical Conference. 14-16.
  23. Gueymard, C.A. (2014), "A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects", Renew. Sustain. Energy Rev., 39, 1024-1034. https://doi.org/10.1016/j.rser.2014.07.117.
  24. Harandizadeh, H., Toufigh, M.M. and Toufigh, V. (2018), "Different neural networks and modal tree method for predicting ultimate bearing capacity of piles," Iran Univ Sci Technol, 8, 311-328.
  25. Hassankhani, E. and Esmaeili-Falak, M. (2024), "Soil-structure interaction for buried conduits influenced by the coupled effect of the protective layer and trench installation", J. Pipeline Syst. Eng. Practice, 15(2), 04024012. https://doi.org/10.1061/JPSEA2.PSENG-1547.
  26. Hoang, N.-D., Tran, X.-L. and Huynh, T.-C. (2022), "Prediction of pile bearing capacity using opposition-based differential flower pollination-optimized least squares support vector regression (ODFP-LSSVR)", Adv. Civil Eng., 2022. https://doi.org/10.1155/2022/7183700
  27. Hoang, N.-D., Tran, X.-L. and Nguyen, H. (2020), "Predicting ultimate bond strength of corroded reinforcement and surrounding concrete using a metaheuristic optimized least squares support vector regression model", Neural Comput. Appl., 32, 7289-7309. https://doi.org/10.1007/s00521-019-04258-x
  28. Jafarzadeh, E., Bohluly, A., Kabiri-Samani, A. and Mansourzadeh, S. (2023), "A study on the performance of circular and rectangular submerged breakwaters using nun-uniform FGVT method", Coastal Eng. J., 65(2), 234-255. https://doi.org/10.1080/21664250.2023.2170688.
  29. Jahed Armaghani, D., Harandizadeh, H. and Momeni, E. (2021), "Load carrying capacity assessment of thin-walled foundations: an ANFIS-PNN model optimized by genetic algorithm", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-021-01380-0.
  30. Jahed Armaghani, D., Shoib, R.S.N.S.B.R., Faizi, K. and Rashid, A.S.A. (2017), "Developing a hybrid PSO-ANN model for estimating the ultimate bearing capacity of rock-socketed piles", Neural Comput. Appl., 28, 391-405. https://doi.org/10.1007/s00521-015-2072-z.
  31. Jang, J.-S. (1993), "ANFIS: Adaptive-network-based fuzzy inference system", IEEE Transact. Syst. Man, and Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541.
  32. Jung, W., Banh, T.T., Luuc, N.G. and Lee, D. (2023), "The smooth topology optimization for bi-dimensional functionally graded structures using level set-based radial basis functions", Steel Compos. Struct., 47(5), 569. https://doi.org/10.12989/scs.2023.47.5.569.
  33. Kamranfar, S., Damirchi, F., Pourvaziri, M., Abdunabi Xalikovich, P., Mahmoudkelayeh, S., Moezzi, R. and Vadiee, A. (2023), "A partial least squares structural equation modelling analysis of the primary barriers to sustainable construction in Iran", Sustainability, 15(18), 13762. https://doi.org/10.3390/su151813762.
  34. Khatti, J. and Grover, K.S. (2023), "Prediction of compaction parameters soil using ga and pso optimized relevance vector machine (RVM)", ICTACT J. Soft Comput., 13(2). https://doi.org/10.21917/ijsc.2023.0399
  35. Khodayari, A., Fakhri, D., Mohammed, A.H., Albaijan, I., Mahmoodzadeh, A., Ibrahim, H.H., Elhag, A.B. and Rashidi, S. (2023), "The gene expression programming method to generate an equation to estimate fracture toughness of reinforced concrete", Steel Compos. Struct., 48(2), 163-177. https://doi.org/10.12989/scs.2023.48.2.163.
  36. Kulkarni, R.U. and Dewaikar, D.M. (2017), "Prediction of interpreted failure loads of rock-socketed piles in Mumbai region using hybrid artificial neural networks with genetic algorithm", Int. J. Eng. Res, 6, 365-372.
  37. Lai, W., Kuang, M., Wang, X., Ghafariasl, P., Sabzalian, M.H. and Lee, S. (2023), "Skin cancer diagnosis (SCD) using Artificial Neural Network (ANN) and Improved Gray Wolf Optimization (IGWO)", Sci. Rep., 13(1), 19377. https://doi.org/10.1038/s41598-023-45039-w.
  38. Lee, I.M. and Lee, J.H. (1996), "Prediction of pile bearing capacity using artificial neural networks", Comput. Geotech., 18(3), 189-200. https://doi.org/10.1016/0266-352X(95)00027-8.
  39. Liang, R. and Bayrami, B. (2023), "Estimation of frost durability of recycled aggregate concrete by hybridized Random Forests algorithms", Steel Compos. Struct., 49(1), 91-107. https://doi.org/10.12989/scs.2023.49.1.091.
  40. Liasi, S., Hadidi, R. and Ghiasi, N. (2021), "Current harmonic compensation by active power filter using neural network-based recognition and controller", In 2021 6th IEEE Workshop on the Electronic Grid (eGRID, 1-08. https://doi.org/10.1109/eGRID52793.2021.9662134
  41. Millan, M.A., Galindo, R. and Alencar, A. (2021), "Application of artificial neural networks for predicting the bearing capacity of shallow foundations on rock masses", Rock Mech. Rock Eng., 54(9), 5071-5094. https://doi.org/10.1007/s00603-021-02549-1.
  42. Moayedi, H., Moatamediyan, A., Nguyen, H., Bui, X.N., Bui, D. T. and Rashid, A.S.A. (2020), "Prediction of ultimate bearing capacity through various novel evolutionary and neural network models", Eng. Comput., 36, 671-687. https://doi.org/10.1007/s00366-019-00723-2.
  43. Momeni, E, Nazir, R., Armaghani, D.J. and Maizir, H. (2014), "Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN", Measurement, 57, 122-131. https://doi.org/10.1016/j.measurement.2014.08.007.
  44. Momeni, Ehsan, Armaghani, D.J., Fatemi, S.A. and Nazir, R. (2018), "Prediction of bearing capacity of thin-walled foundation: a simulation approach", Eng. Comput., 34, 319-327. https://doi.org/10.1007/s00366-017-0542-x.
  45. Momeni, Ehsan, Dowlatshahi, M.B., Omidinasab, F., Maizir, H. and Armaghani, D.J. (2020), "Gaussian process regression technique to estimate the pile bearing capacity", Arab. J. Sci. Eng., 45(10), 8255-8267. https://doi.org/10.1007/s13369-020-04683-4.
  46. Momeni, S., Kooban, F., Alipouri Niaz, S., Niyafard, S. and Soleimani, A. (2023), "Waste heat recovery, efficient lighting, and proper insulation: a comprehensive study of energy consumption and savings in the residential sector", Asian J. Civil Eng., 1-10. https://doi.org/10.1007/s42107-023-00923-8.
  47. Moradi, G., Hassankhani, E. and Halabian, A.M. (2022), "Experimental and numerical analyses of buried box culverts in trenches using geofoam", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 175(3), 311-322. https://doi.org/10.1680/jgeen.19.00288.
  48. Murlidhar, B.R., Sinha, R.K., Mohamad, E.T., Sonkar, R. and Khorami, M. (2020), "The effects of particle swarm optimisation and genetic algorithm on ANN results in predicting pile bearing capacity Bhatawdekar Ramesh Murlidhar * * Rabindra Kumar Sinha Edy Tonnizam Mohamad Rajesh Sonkar Majid Khorami", Int. J. Hydromechanics, X(1). https://doi.org/10.1504/IJHM.2020.105484.
  49. Nazir, R. and Maizir, H. (2015), An Artificial Neural Network Approach for Prediction of Bearing Capacity of Spread Foundations in Sand ANN.
  50. Nazir, R., Momeni, E. and Marsono, K. (2015), "Prediction of bearing capacity for thin-wall spread foundations using ICAANN predictive model", In Proc. Int. Conf. Civil, Struct. Transp. Eng. Ottawa, Ontario.
  51. Nematirad, R. and Pahwa, A. (2022), "Solar radiation forecasting using artificial neural networks considering feature selection," In 2022 IEEE Kansas Power and Energy Conference (KPEC) 1-4. https://doi.org/10.1109/KPEC54747.2022.9814765.
  52. Nguyen, H., Cao, M.-T., Tran, X.-L., Tran, T.-H. and Hoang, N.-D. (2023), "A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles", Neural Comput. Appl., 35(5), 3825-3852. https://doi.org/10.1007/s00521-022-07896-w.
  53. Paksaz, A.M., Salamian, F. and Jolai, F. (2021), "Waste collection problem with multi-compartment vehicles and fuzzy demands", 2nd National Conference on Industrial Engineering, Management, Economy and Accounting, September, Oslo, Norway. 1-12.
  54. Pham, T.A., Ly, H.-B., Tran, V.Q., Giap, L. Van, Vu, H.-L.T. and Duong, H.-A.T. (2020), "Prediction of pile axial bearing capacity using artificial neural network and random forest", Appl. Sci., 10(5), 1871. https://doi.org/10.3390/app10051871.
  55. Pham, T.A., Tran, V.Q., Vu, H.-L.T. and Ly, H.-B. (2020), "Design deep neural network architecture using a genetic algorithm for estimation of pile bearing capacity", PloS One, 15(12), e0243030. https://doi.org/10.1371/journal.pone.0243030.
  56. Prayogo, D., Cheng, M.-Y., Wu, Y.-W. and Tran, D.-H. (2020), "Combining machine learning models via adaptive ensemble weighting for prediction of shear capacity of reinforced-concrete deep beams", Eng. Comput., 36, 1135-1153. https://doi.org/10.1007/s00366-019-00753-w.
  57. Rezaei, H., Nazir, R. and Momeni, E. (2016), "Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study", J. Zhejiang University-SCIENCE A, 4(17), 273-285. https://doi.org/10.1631/jzus.A1500033.
  58. Sarkhani Benemaran, R. (2023), "Application of extreme gradient boosting method for evaluating the properties of episodic failure of borehole breakout", Geoenergy Sci. Eng., 211837. https://doi.org/https://doi.org/10.1016/j.geoen.2023.211837.
  59. Sarkhani Benemaran, R. and Esmaeili-Falak, M. (2023), "Predicting the Young's modulus of frozen sand using machine learning approaches: State-of-the-art review", Geomech. Eng., 34(5), 507-527. https://doi.org/10.12989/gae.2023.34.5.507.
  60. Shabani, F. and Kaviani-Hamedani, F. (2023), "Cyclic response of sandy subsoil layer under traffic-induced principal stress rotations: Application of bidirectional simple shear apparatus", Soil Dyn. Earthq. Eng., 164, 107573. https://doi.org/10.1016/j.soildyn.2022.107573.
  61. Shahin, M.A. and Jaksa, M.B. (2005), "Neural network prediction of pullout capacity of marquee ground anchors", Comput. Geotech., 32(3), 153-163. https://doi.org/10.1016/j.compgeo.2005.02.003.
  62. Shariatmadari, N., ESLAMI, A.A. and KARIM, P.F.M. (2008), Bearing Capacity of Driven Piles in Sands from SPT-Applied to 60 Case Histories.
  63. Shi, X., Yu, X. and Esmaeili-Falak, M. (2023), "Improved arithmetic optimization algorithm and its application to carbon fiber reinforced polymer-steel bond strength estimation", Compos. Struct., 306, 116599. https://doi.org/10.1016/j.compstruct.2022.116599.
  64. Soleimanbeigi, A. and Hataf, N. (2005), "Predicting ultimate bearing capacity of shallow foundations on reinforced cohesionless soils using artificial neural networks", Geosynthetic. Int., 12(6), 321-332. https://doi.org/10.1680/gein.2005.12.6.321.
  65. Stone, R.J. (1993), "Improved statistical procedure for the evaluation of solar radiation estimation models", Solar Energy, 51(4), 289-291. https://doi.org/10.1016/0038-092X(93)90124-7.
  66. Tabasi, E., Jahangiri, B. and Kooban, F. (2023), "Effect of temperature profile on dynamic behavior of asphalt pavements under moving loads", Proceedings of the Institution of Civil Engineers-Construction Materials, 1-36. https://doi.org/10.1680/jcoma.22.00116.
  67. Teh, C.I., Wong, K.S., Goh, A.T.C. and Jaritngam, S. (1997), "Prediction of pile capacity using neural networks", J. Comput. Civil Eng., 11(2), 129-138. https://doi.org/10.1061/(ASCE)0887-3801(1997)11:2(129).
  68. Vahdatpour, M.S., Sajedi, H. and Ramezani, F. (2018), "Air pollution forecasting from sky images with shallow and deep classifiers", Earth Sci. Informatics, 11, 413-422. https://doi.org/10.1007/s12145-018-0334-x.
  69. Vu, Q.V., Tangaramvong, S., Van, T.H. and Papazafeiropoulos, G. (2023), "Hybrid GA-ANN and PSO-ANN methods for accurate prediction of uniaxial compression capacity of CFDST columns", Steel Compos. Struct., 47(6), 759-779. https://doi.org/10.12989/scs.2023.47.6.759.
  70. Yang, S., Shokravi, M. and Tabatabay, H. (2023), "Evaluating comparisons of geological hazards in landslides using fuzzy logic methods and hierarchical analysis", Steel Compos. Struct., 48(5), 499. https://doi.org/10.12989/scs.2023.48.5.499.
  71. Zhu, T., Huang, L., Zhang, Z. and Bayrami, B. (2022), "Estimation of splitting tensile strength of modified recycled aggregate concrete using hybrid algorithms", Steel Compos. Struct., 44(3), 389-406. https://doi.org/10.12989/scs.2022.44.3.389.
  72. Ziaee, S.A., Sadrossadat, E., Alavi, A.H. and Mohammadzadeh Shadmehri, D. (2015), "Explicit formulation of bearing capacity of shallow foundations on rock masses using artificial neural networks: application and supplementary studies", Environ. Earth Sci., 73, 3417-3431. https://doi.org/10.1007/s12665-014-3630-x.