DOI QR코드

DOI QR Code

주성분 분석을 통한 선박 조종 중 4자유도 동역학 특성 연구

A Study on 4DOF Ship Dynamics in Maneuver by Principal Component Analysis

  • 김동환 (충남대학교 첨단수송체연구소) ;
  • 김민창 (충남대학교 자율운항시스템공학과) ;
  • 이승범 (충남대학교 선박해양공학과) ;
  • 서정화 (충남대학교 자율운항시스템공학과)
  • Dong-Hwan Kim (Institute of Advanced Transportation Vehicles, Chungnam National University) ;
  • Minchang Kim (Department of Autonomous Vehicle System Engineering, Chungnam National University) ;
  • Seungbeom Lee (Department of Naval Architecture and Ocean Engineering, Chungnam National University) ;
  • Jeonghwa Seo (Department of Autonomous Vehicle System Engineering, Chungnam National University)
  • 투고 : 2023.10.23
  • 심사 : 2024.01.03
  • 발행 : 2024.02.20

초록

The present study concerns a feasibility study for applying principal component analysis to ship dynamics in maneuver. Using the four degrees of freedom standard modular model for ship dynamics maneuver simulations of large angle zigzag tests with rudder deflection angle variations are conducted. The datasets of ship motion, hydrodynamic force, and moment during the maneuver are acquired to identify the principal modes. The covariance matrix of obtained ship dynamics variables shows a strong linear correlation between the motion, hydrodynamic force, and moment, except the surge force. Four eigenvectors of the covariance matrix are selected as the principal modes of ship dynamics. Using the principal modes, ship motion in turning circle and zigzag tests is reconstructed, showing good agreement with the original data.

키워드

과제정보

이 논문은 2023년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(RS-2023-00256122, 해양무인시스템 통합실증 시험·평가기술 개발).

참고문헌

  1. Araki, M., Sadat-Hosseini, H., Sanada, Y., Tanimoto, K., Umeda, N. and Stern, F., 2012. Estimating maneuvering coefficients using system identification methods with experimental, system-based, and CFD free-running trial data. Ocean Engineering, 51, pp.63-84.
  2. Hamamoto, M. and Kim, Y.-S., 1993. A new coordinate system and the equations describing manoeuvring motion of a ship in waves. Journal of the Society of Naval Architects of Japan, 173, pp.209-220.
  3. Hong, S. H. and Lee, S. I., 2010. Vibration analysis of the tapping AFM microcantilevers using proper orthogonal decomposition. Transactions of the Korean Society for Noise and Vibration Engineering, 20(4), pp.414-421.
  4. Jung, Y. and Yoon, D., 2021. Analysis of null steering anti-jamming performance based on SVD in tactical communication network for small military unit. Journal of Korean Institute of Information Technology, 19(6), pp.65-72.
  5. Kim, Y.-G., Yeo, D.-J., Son, N.-S., Kim, S.-Y., Yun, K.-H. and Oh, B.-I., 2011. Prediction of maneuverability of KCS with 4 degrees of freedom. Journal of the Society of Naval Architects of Korea, 48(3), pp.267-274.
  6. Kim, D.J. and Kim, Y.-G., 2020. Tune of hydrodynamic coefficients based on empirical formula by using menoeuvring performance indices of a ship. Journal of the Society of Naval Architects of Korea, 57(6), pp.331-344.
  7. Kim, D.-H., Sanada, Y., Park, S., Sadat-Hosseini, H. and Stern, F., 2021. URANS simulations for a free-running container ship: Part 1. turning circle. Journal of Hydrodynamics, 33(3), pp.421-447.
  8. Kim, K., Kim, H., Choi, S., Na, K.-I., Lee, H. and Seo, J., 2022. Development of ship dynamics model by free-running model tests and regression. Journal of the Society of Naval Architects of Korea, 59(3), pp.173-182.
  9. Lee, H.-Y. and Shin, S.-S., 1998. Approximate technique for ship's manoeuvrability prediction. Journal of the Society of Naval Architects of Korea, 35(4), pp.19-26.
  10. Lee, H.-Y. and Shin, H.-K., 1999. Estimation of maneuvering mathematical model by system identification techniques. Journal of Ocean Engineering and Technology, 13(4), pp.118-123.
  11. Lee, J.H., 2017. Proper orthogonal decomposition and its application: parametric reduced order models. Computational Structural Engineering, 30(1), pp.29-35.
  12. Moreira, L. and Soares, C.G., 2003. Dynamic model of manoeuvrability using recursive neural networks. Ocean Engineering, 30(11), pp.1669-1697.
  13. Okuda, R., Yasukawa, H. and Matsuda, A., 2023. Validation of maneuvering simulations for a KCS at different forward speeds using the 4-DOF MMG method. Ocean Engineering, 284, 115174.
  14. Perera, L.P., Oliveira, P. and Soares, C.G., 2015. System identification of nonlinear vessel steering. Journal of Offshore Mechanics and Arctic Engineering, 137(3), 031302.
  15. Sanada, Y., Park, S., Kim, D.-H., Wang, Z., Stern, F. and Yasukawa, H., 2021. Experimental and computational study of hull-propeller-rudder interaction for steady turning circles. Physics of Fluids, 33, 127117.
  16. Shin, H., Jung, J.-H. Lee, H.-Y., 2009. Prediction of ship maneuverability by circular motion test. Journal of the Society of Naval Architects of Korea, 46(3), pp.259-267.
  17. Shin, S.-Y., Jung, K.-H., Kang, Y.-D., Suh, S.-B, Kim, J. and An, N.-H., 2017. A study on the effect of large coherent structures to the skin friction by POD analysis. Journal of the Society of Naval Architects of Korea, 54(5), pp.406-414.
  18. Sohn, K.-H. and Kim, Y.-M., 2003. A study on new mathematical model of ship manoeuvring motion taking coupling effect of roll into consideration. Journal of Korean Navigation and Port Research, 27(5), pp.451-458.
  19. Sung, Y.J. and Park, S.-H., 2015. Prediction of ship manoeuvring performance based on virtual captive model tests. Journal of the Society of Naval Architects of Korea, 52(5), pp.407-417.
  20. Sutulo, S. and Soares, C.G., 2014. An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests. Ocean Engineering, 79, pp.10-25.
  21. Wakita, K., Maki, A., Umeda, N., Miyauchi, Y., Shimoji, T., Rachman, D. and Akimoto, Y., 2022. On neural network identification for low-speed ship maneuvering model. Journal of Marine Science and Technology, 27, pp.772-785.
  22. Wang, Z., Soares, C.G. and Zou, Z., 2020a. Optimal design of excitation signal for identification of nonlinear ship manoeuvring model. Ocean Engineering, 196, 106778.
  23. Wang, Z., Xu, H., Xia, L., Zou, Z. and Soares, C.G., 2020b. Kernel-based support vector regression for nonparametric modeling of ship maneuvering motion. Ocean Engineering, 216, 107994.
  24. Xu, H. and Soares, C.G., 2016. Vector field path following for surface marine vessel and parameter identification based on LS-SVM. Ocean Engineering, 113, pp.151-161.
  25. Xu, H., Hinostroza, M.A. and Soares, C.G., 2018. Estimation of hydrodynamic coefficients of a nonlinear manoeuvring mathematical model with free-running ship model tests. International Journal of Maritime Engineering, 160(3), pp.213-225.
  26. Yang, K.-K., Kim, Y.-C., Kim, K.-S. and Yeon, S.M., 2022. Numerical analysis on turning and yaw checking abilities of KCS in calm water a based on free-running simulations. Journal of the Society of Naval Architects of Korea, 59(1), pp.1-8.
  27. Yasukawa, H. and Yoshimura, Y., 2015. Introduction of MMG standard method for ship maneuvering predictions. Journal of Marine Science and Technology, 20, pp.37-52.
  28. Yasukawa, H., Hirata, N. and Yamazaki, Y., 2018. Effect of bilge keels on maneuverability of a fine ship. Journal of marine Science and Technology, 23, pp.302-318.
  29. Yasukawa, H., Sakuno, R. and Yoshimura, Y., 2019. Practical maneuvering simulation method of ships considering the roll-coupling effect. Journal of Marine Science and Technology, 24, pp.1280-1296.
  30. Yoo, C., 2020. Estimation of cosine similarity change in singular value decomposition. Journal of Korean Institute of Information Technology, 18(3), pp.31-37.
  31. Yoon, H.K., Son, N.S. and Lee, G.J., 2007. Estimation of the roll hydrodynamic moment model of a ship by using the system identification method and the free running model test. IEEE Journal of Oceanic Engineering, 32(4), pp.798-806.
  32. Yun, H.K. and Son, N.S., 2004. Estimation of roll related coefficitnes of a ship by using the system identification method. Journal of the Society of Naval Architects of Korea, 41(4), pp.53-58.
  33. Yun, K. and Yeo, D.J., 2019. An experimental study on the manoeuvrabiilty of a ship in heeled condition. Journal of the Society of Naval Architects of Korea, 56(3), pp.273-280.
  34. Yun, K., Choi, H. and Kim, D.J., 2021. An experimental study on the manoeuvrability of KCS with different scale ratios by free running model test. Journal of the Society of Naval Architects of Korea, 58(6), pp.415-423.
  35. Yun, K., Kim, D.J., Yeon, S.M., Kim, Y.-C., Kim, Y.G. and Yang, K.-K., 2022. A study on the manoeuvrability of 1/42.0 scaled KCS. Journal of the Society of Naval Architects of Korea, 59(5), pp.262-270.