DOI QR코드

DOI QR Code

Effect of Change in Degrees of Inclination during Treadmill Gait Training on EEG of Stroke Patients

경사도 각도에 따른 트레드밀 보행훈련 시 뇌졸중 환자의 뇌파에 미치는 영향

  • Sun-Min Kim (Department of Physical Therapy, Gimcheon University) ;
  • Dong-Hoon Kim (Department of Physical Therapy, Gimcheon University) ;
  • Sang-Hun Jang (Department of Physical Therapy, Korea National University of Transportation)
  • 김선민 (김천대학교 물리치료학과) ;
  • 김동훈 (김천대학교 물리치료학과) ;
  • 장상훈 (한국교통대학교 물리치료학과)
  • Received : 2024.04.01
  • Accepted : 2024.04.11
  • Published : 2024.04.30

Abstract

Purpose: This study aimed to investigate the effects of gradually increasing treadmill inclination on the electroencephalogram (EEG) of stroke patients during gait training. Methods: Three stroke patients who were diagnosed with stroke within six months and capable of walking on a treadmill were selected as subjects. EEG electrodes were attached at Fp1, Fp2, F3, F4, C3, C4, P3, and P4 positions of the cerebral hemispheres using the International 10-20 system. The intervention involved walking for 2 minutes each at 0 degrees, 15 degrees, and 30 degrees inclination on the treadmill while focusing on a target point located in front during the treadmill gait training. The EEG (Smartingmobi, Serbia) generated when the treadmill gradient gradually increased was measured. In addition, relative alpha and relative beta waves were visualized through the Brain mapping program in the TeleScan program to assess the changes in each brain region for the activity of the EEG. Results: The relative alpha wave value decreased as treadmill inclination increased, while the relative beta wave value increased. Conclusion: Gradually increasing the inclination during treadmill gait training appears to be a crucial parameter for increasing the brain activity levels of stroke patients.

Keywords

References

  1. Akuthota V, Nadler SF. Core strengthening. Archives of physical medicine and rehabilitation. 2004;85:86-92. https://doi.org/10.1053/j.apmr.2003.12.005
  2. Balaban B, Tok F. Gait disturbances in patients with stroke. Pm & r. 2014;6(7): 635-642. https://doi.org/10.1016/j.pmrj.2013.12.017
  3. Choi W, Lee G, Lee S. Effect of the cognitive-motor dual-task using auditory cue on balance of surviviors with chronic stroke: a pilot study. Clinical Rehabilitation. 2015;29(8):763-770. https://doi.org/10.1177/0269215514556093
  4. Dobkin BH. Strategies for stroke rehabilitation. The Lancet Neuroiogy. 2004;3(9):528-536
  5. Fairclough SH, Venables L, Tattersall A. The influence of task demand and learning on the psychophysiological response. International Journal of Psychophysiology. 2005;56(2):171-184. https://doi.org/10.1016/j.ijpsycho.2004.11.003
  6. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state": a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research. 1975;12(3):189-198.
  7. Florence G, Guerit, JM, Gueguen B. Electroencephalography (EEG) and Somatocensory evoked potentials (SEP) to prevent cerebral ischemia in the operating room. Neurophysiology Clinic. 2004;34(1):17-32. https://doi.org/10.1016/j.neucli.2004.01.001
  8. Gama GL, Trigueiro LC, Simao CR, et al. Effects of treadmill inclination on hemiparetic gait: controlled and randomized clinical trial. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists. 2015;94(9):718-27. https://doi.org/10.1097/PHM.0000000000000240
  9. Halla CD, Smith AL, Keelec SW. The impact of aerobic activity on cognitive function in older adults: A new synthesis based on the concept of executive control. European Journal of Cognitive Psychology. 2001;13(1):279-300. https://doi.org/10.1080/09541440126012
  10. Han YG, Kim MK. The Effect of Task-Oriented Treadmill Training on Gait Function in Patients with Stroke: A Systematic Review and Meta-Analysis. Korean Society of Physical Medicine. 2024;19(1):131-142. https://doi.org/10.13066/kspm.2024.19.1.131
  11. Han, YS, Chae MS, Park PW, et al. Patterns Analysis of Prefrontal Brain Waves of Cancer Patients using Brain-Computer-Interface. Journal of KIISE: Software and Applications. 2008;35(3):169-178.
  12. Hesse S, Konrad M, Uhlenbrock D. Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects. Archives of Physical Medicine and Rehabilitation. 1999;80(4):421-427. https://doi.org/10.1016/S0003-9993(99)90279-4
  13. Hesse S, Werner C, Paul T, et al. Influence of walking speed on lower limb muscle activity and energy consumption during treadmill walking of hemiparetic patients. Archives of Physical Medicine and Rehabilitation. 2001;82(11):1547-1550. https://doi.org/10.1053/apmr.2001.26607
  14. Jeong YG, Koo JW. The effects of treadmill walking combined with obstacle-crossing on walking ability in ambulatory patients after stroke: a pilot randomized controlled trial. Top. Stroke Rehabilitation. 2016; 23(6):406-12. https://doi.org/10.1080/10749357.2016.1168592
  15. Jueptner M, Stephan KM, Frith CD, et al. Anatomy of motor learning. I. Frontal cortex and attention to action. Journal of Neurophysiology. 1997;77(3):1313-1324. https://doi.org/10.1152/jn.1997.77.3.1313
  16. Kawamura K, Tokuhiro A, Takechi H. Gait analysis of slope walking: a study on step length, stride width, time factors and deviation in the center of pressure. Acta Medica Okayama. 1991;45(3):179-184.
  17. Kelly JO, Kilbreath SL, Davis GM, et al. Cardiorespiratory fitness and walking ability in subacute stroke patients. Archives of Physical Medicine and Rehabilitation. 2003;84(12):1780-1785. https://doi.org/10.1016/S0003-9993(03)00376-9
  18. Kim BG, Gong WT, Jung YW. The myoelectrical activities of trunk muscle and quardriceps femoris according to treadmill gait different inclination and speeds. Korean Journal of Orthopedic Manual Therapy. 2007;13(1):44-57
  19. Kim EJ, Hwang BK, Kwon HC. The effects of gait component and foot plantar pressure on gait training way in stroke patients. Journal of Rehabilitation Science. 2009;27(2):41-54.
  20. Kim JJ, Jung KI, Woo MJ. The effect of aerobic exercise on brain activation during an attention task in elementary school children. Korea National Chung Buk University of Education. Dissertation of Doctorate Degree. 2015
  21. Kuk, EJ, Kim JM. An EEG-based brain mapping to determine mirror neuron system in patients with chronic stroke during action observation. The Journal of Korean Physical Therapy. 2015;27(3):135-139.
  22. Kwon OH, Woo Y, Lee JS, et al. Effects of task-oriented treadmill-walking training on walking ability of stoke patients. Topics in Stroke Rehabilitation. 2015;22(6):444-452. https://doi.org/10.1179/1074935715Z.00000000057
  23. Lee GY, Woo MJ, Kim WJ, et al. The Influence of Visual and Auditory Interference on Cortical Activity and Performance during Visuo-motor Task. SECONDARY EDUCATION RESEARCH. 2013;61(3):633-648. https://doi.org/10.25152/ser.2013.61.3.633
  24. Lee YW, Shin DC, Lee KJ, et al. The relation between asymmetric weight-supporting and gait symmetry in patients with stroke. Journal of the Korean Society of Physical Medicine. 2012;7(2):205-212. https://doi.org/10.13066/kspm.2012.7.2.205
  25. Lee JW, Ahn SN, Kim YS. Effect of Cognitive Task on EEG in Patients with Damaged Basal Ganglia. Journal of Korean Society of Neurocognitive Rehabilitation. 2010;2(0):1-14.
  26. Oliveira CB, Medeiros IRT, Ferreira NA, et al. Balance control in hemiparetic stroke patients: main tools for evaluation. Journal of Rehabilitation Research & Development. 2008;45(8):1215-1226.
  27. Outermans JC, van Peppen RP, Wittink H, et al. Effects of a high-intensity task-oriented training on gait performance early after stroke: a pilot study. Clinical Rehabilitation. 2010;24(11):979-987.
  28. Patterson KK, Gage WH, Brooks D, et al. Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait & Posture. 2010;31(2):241-246. https://doi.org/10.1016/j.gaitpost.2009.10.014
  29. Roth CL. How to protect the aging work force. Occupational Hazards. 2005;67:52-4.
  30. Salbach NM, Mayo NE, Wood S et al. A task-oriented intervention enhances walking distance and speed in the first urar post stroke : A randomized controlled trial. Clinical Rehabilitation. 2004;18(5):509-519. https://doi.org/10.1191/0269215504cr763oa
  31. Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke. Progress in Neurobiology. 2004;73(1):61-72. https://doi.org/10.1016/j.pneurobio.2004.04.001
  32. Sokhadze TM, Cannon RL, Trudeau DL. EEG biofeedback as a treatment for substance use disorders: review, rating of efficacy, and recommendations for further research. Applied Psychophysiology and Biofeedback. 2008;33:1-28. https://doi.org/10.1007/s10484-007-9047-5
  33. Teplan M. Fundamentals of EEG measurement. Measurement Science Review. 2002;2:1-11.
  34. Thompson M, Thompson L. The Neurofeedback Book, 2nd edition: Association for Applied Psychophysiology & Biofeedback. Transactions on Neural Systems and Rehabilitation Engineering. 2015;25(11): 2105-2112.
  35. Warutkar V, Dadgal R, Mangulkar UR. Use of robotics in gait rehabilitation following stroke: a review. Cureus. 2022;14(11).
  36. Wing K. Effect of neurofeedback on motor recovery of a patient with brain injury: A case study and its implications for stroke rehabilitation. Topics in Stroke Rehabilitation. 2001;8(3):45-53. https://doi.org/10.1310/4G2F-5PLV-RNM9-BGGN
  37. Zhang X, Wei Z, Ren X et al. Complex neuromuscular changes post-stroke revealed by clustering index analysis of surface electromyogram. IEEE. 2017.