DOI QR코드

DOI QR Code

Polynomial-Filled Function Algorithm for Unconstrained Global Optimization Problems

  • Salmah (Department of Mathematics, Universitas Gadjah Mada) ;
  • Ridwan Pandiya (Department of Informatics, Institut Teknologi Telkom Purwokerto)
  • Received : 2023.01.23
  • Accepted : 2024.01.22
  • Published : 2024.03.31

Abstract

The filled function method is useful in solving unconstrained global optimization problems. However, depending on the type of function, and parameters used, there are limitations that cause difficultiies in implemenations. Exponential and logarithmic functions lead to the overflow effect, requiring iterative adjustment of the parameters. This paper proposes a polynomial-filled function that has a general form, is non-exponential, nonlogarithmic, non-parameteric, and continuously differentiable. With this newly proposed filled function, the aforementioned shortcomings of the filled function method can be overcome. To confirm the superiority of the proposed filled function algorithm, we apply it to a set of unconstrained global optimization problems. The data derived by numerical implementation shows that the proposed filled function can be used as an alternative algorithm when solving unconstrained global optimization problems.

Keywords

References

  1. A. I. Ahmed, A new parameter free filled function for solving unconstrained global optimization problems, Int. J. Comput. Math., 98(2021), 106-119. https://doi.org/10.1080/00207160.2020.1731484
  2. L. An, L. S. Zhang and M. L. Chen, A parameter-free filled function for unconstrained global optimization, J. Shanghai Univ., English Edition, 8(2004), 117-123 https://doi.org/10.1007/s11741-004-0024-4
  3. T. M. El-Gindy, M. S. Salim and A. I. Ahmed, A new filled function method applied to unconstrained global optimization, Appl. Math. Comput., 273(2016), 1246-1256.
  4. C. Gao, Y. Yang and B. Han, A new class of filled functions with one parameter for global optimization, Comput. Math. Appl., 62(2011), 2393-2403. https://doi.org/10.1016/j.camwa.2011.05.006
  5. Y. Gao, Y. Yang and M. You, A new filled function method for global optimization, Appl. Math. and Comput., 268(2015), 685-695.
  6. R. P. Ge, A Filled function method for finding a global minimizer of a function of several variables, Math. Program., 46(1990), 191-204. https://doi.org/10.1007/BF01585737
  7. F. Lampariello and G. Liuzzi, A filling function method for unconstrained global optimization, Comput. Optim. Appl., 61(2015), 713-729. https://doi.org/10.1007/s10589-015-9728-6
  8. H. Liu, Y. Wang, S. Guan and X. Liu, A new filled function method for unconstrained global optimization, Int. J. Comput. Math., 94(2017), 2283-2296. https://doi.org/10.1080/00207160.2017.1283021
  9. S. Luccidi and V. Picciali, New classes of globally convexized filled functions for global optimization, J. Global Optim., 24(2002), 219-236. https://doi.org/10.1023/A:1020243720794
  10. S. Ma, Y. Yang and H. Liu, A parameter free filled function for unconstrained global optimization, Appl. Math. and Comput., 215(2010), 3610-3619.
  11. R. Pandiya, W. Widodo, Salmah and I. Endrayanto, Non parameter-filled function for global optimization, Appl. Math. Comput., 391(2021), 125642.
  12. R. Pandiya, W. Widodo, Salmah and I. Endrayanto, A novel parameter-free filled function applied to global optimization, Eng. Lett., 29(2021), 191-200.
  13. A. Sahiner and S. A. Ibrahem, A new global optimization technique by auxiliary function method in a directional search, Optim. Lett., 13(2019), 309-323. https://doi.org/10.1007/s11590-018-1315-1
  14. Y. L. Shang, D. G. Pu and A. P. Jiang, Finding global minimizer with oneparameter filled function on unconstrained global optimization, Appl. Math. Comput., 191(2007), 176-182.
  15. F. Wei, Y. Wang and H. Lin, A new filled function method with two parameters for global optimization, J. Optim. Theory Appl., 163(2014), 510-527. https://doi.org/10.1007/s10957-013-0515-1
  16. Z. Y. Wu, H. W. J. Lee, L.S. Zhang and X. M. Yang, A novel filled function method and quasi-filled function method for global optimization, Comput. Optim. Appl., 34(2005a), 249-272.
  17. Z. Y. Wu, L. S. Zhang, K. L. Teo and F. S. Bai, New modified function method for global optimization, J. Optim. Theory Appl., 125(2005), 181-203. https://doi.org/10.1007/s10957-004-1718-2
  18. Y. Yang and Y. Shang, A new filled function method for unconstrained global optimization, Appl. Math. Comput., 173(2006), 501-512.
  19. L. Y. Yuan, Z. P. Wan, Q. H. Tang and Y. Zheng, A class of parameter-free filled functions for box-constrained system of nonlinear equations, Acta Math. Appl. Sin., English Series, 32(2016), 355-364. https://doi.org/10.1007/s10255-016-0560-2