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Abstract. Let V3(z, f) and σ
(1)
3 (z, f) be the cubic polynomials representing, respectively,

the 3rd de la Vallée Poussin mean and the 3rd Cesàro mean of order 1 of a power series

f(z). If K denotes the usual class of convex univalent functions in the open unit disk

centered at the origin, we show that, in general, V3(z, f) ⊀ σ
(1)
3 (z, f), for all f ∈ K .

Making use of polylogarithms, we identify a transformation, Λ : K → K , such that

V3(z,Λ(f)) ≺ σ
(1)
3 (z,Λ(f)) for all f ∈ K . Here ‘≺’ stands for subordination between two

analytic functions.

1. Introduction

For a real number r, 0 < r < 1 let Dr = {z ∈ C : |z| < r} denote the open
disc in the complex plane with center at the origin and radius r and D := D1. We
denote by A the class of all analytic functions defined in D that are normalized by
the conditions f(0) = f ′(0) − 1 = 0, and by the class S of univalent functions in
A. Further, we let K denote the subclass of those functions in S that map D onto
convex domains and

S2 = {f ∈ K : zf ′ ∈ K } .
Analytically, f ∈ K if and only if

ℜ
{
1 +

zf ′′(z)

f ′(z)

}
> 0, z ∈ D.

If C denotes the class of close-to-convex functions in D, then S2 ⊂ K ⊂ C ⊂ S .
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In 1983, Lewis [7], in an extremely involved proof, showed that the polyloga-
rithmic functions

(1.1) Liβ(z) =

∞∑
n=1

1

nβ
zn, β ≥ 0

are convex univalent in D. For β > 0, the series in (1.1) has the integral represen-
tation given by the formula (see [13]):

Liβ(z) =
1

Γ(β)

∫ 1

0

z(log(1/t))β−1 1

1− tz
dt, |z| < 1, β > 0.

Here Γ stands for Euler gamma function. Note that

(1.2) Li1(z) =

∫ 1

0

z

1− tz
dt = − log(1− z) , |z| < 1

and

(1.3) Li2(z) =

∫ 1

0

z log(1/t)
1

1− tz
dt = −

∫ z

0

log (1− ζ)

ζ
dζ, |z| < 1.

The dilogarithm, Li2, is of particular importance, since it arises in many integrals
that cannot be expressed in terms of elementary functions. Due to this, it is used
in many computer algebra systems, such as Maple (see [1]), where it takes the form
dilog(z) = Li2(1− z).

The de la Vallée Poussin means are defined by

vn(f, t) =
1

2π

∫ 2π

0

wn(t− u)f(u)du, n ∈ N,

where f is periodic real-valued function and

wn(t) =
2n(n!)2

(2n)!
(1 + cos t)n =

1(
2n
n

) n∑
k=−n

(
2n

n+ k

)
eikt

are the de la Vallée Poussin kernels. In 1958, Pólya and Schoenberg [8] cast these
means in terms of complex-valued analytic functions using the Hadamard product.

The Hadamard product or convolution of two power series f(z) =
∑∞

n=0 anz
n

and g(z) =
∑∞

n=0 bnz
n is defined as the power series

∑∞
n=0 anbnz

n and is denoted
by (f ∗ g)(z). If f and g are analytic in D, then f ∗ g is analytic in D as well.
Define

Vn(z) =

(
2n

n

)−1 n∑
k=1

(
2n

n+ k

)
zk, n ∈ N, z ∈ D.
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For a given function f(z) =
∑∞

n=1 anz
n,

Vn(z, f) = (Vn ∗ f)(z) =
(
2n

n

)−1 n∑
k=1

(
2n

n+ k

)
akz

k

is the nth de la Vallée Poussin mean of f. Pólya and Schoenberg ([8, Theorem 2, p.
298]) proved that for all n ∈ N the de la Vallée Poussin means Vn(z, f) are convex
if and only if f is convex.
Similarly, for a real number α ≥ 0, if

σ(α)
n (z) =

(
n+ α− 1

n− 1

)−1 n∑
k=1

(
n+ α− k

n− k

)
zk, n ∈ N, z ∈ D,

then the polynomial,

σ(α)
n (z, f) = (σ(α)

n ∗ f)(z) =
(
n+ α− 1

n− 1

)−1 n∑
k=1

(
n+ α− k

n− k

)
akz

k,

is called the nth Cesàro mean of f of order α. Note that σ
(α)
n (z) = σ

(α)
n (z, z/(1−z)).

Several authors (see [3, 4, 6, 10]) studied univalence properties of the polynomi-

als σ
(α)
n (z, z/(1 − z)) and it is now known (see [6]) that for α ≥ 1 and n ∈ N,

σ
(α)
n (z, z/(1− z)) ∈ C . Using the fact that the class C is closed under convolution

with convex functions (see [11, Theorem 2.2]), we immediately get that for α ≥ 1

and n ∈ N, σ(α)
n (z, f) ∈ C for all f ∈ K . For some more geometric and subordina-

tion properties of Cesàro means we refer to [12, 14].

Let two functions f and g be analytic in Dr. Then f is called subordinate to g,
written f ≺ g, in Dr if there exists an analytic function w satisfying the inequality
|w(z)| ≤ |z| < r such that f(z) = g(w(z)) in Dr. If g is univalent in Dr, then f ≺ g
in Dr is equivalent to f(0) = g(0) and f(Dr) ⊂ g(Dr).

In 1981, Singh and Singh [15] proved the following result:

Theorem 1.1. If f ∈ K , then V2(z, f) ≺ σ
(1)
2 (z, f) in D.

Recently, the authors [18] proved that, infact, V2(z, f) ≺ σ
(α)
2 (z, f) holds in D

for all f ∈ K and for all α ≥ 1.

A natural question which arises is: Is V3(z, f) ≺ σ
(α)
3 (z, f) in D, for all f ∈ K ?

The primary objective of this paper is to answer this question in the case that
α = 1. The paper is arranged as follows. In Section 2, we collect some known
results which we shall use in the sequel. Section 3 starts with an example showing
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that answer to above question is ‘no’. Then, using polylogarithms, a subclass of K

is identified such that for all f in this subclass, V3(z, f) ≺ σ
(1)
3 (z, f) in D.

2. Preliminaries

In this section we recall the following definition and results which shall be needed
to prove our results in this paper.

Definition 2.1. A sequence {bn}∞1 of complex numbers is said to be a subordinat-
ing factor sequence if, whenever f(z) =

∑∞
n=1 anz

n, a1 = 1, is univalent and convex
in D, we have

∞∑
n=1

anbnz
n ≺ f(z).

Lemma 2.2. [16] A sequence {bn}∞1 of complex numbers is a subordinating factor
sequence if and only if

ℜ

[
1 + 2

∞∑
n=1

bnz
n

]
> 0, z ∈ D.

Lemma 2.3. [11] Let ϕ and ψ be convex functions in D and suppose that f is
subordinate to ϕ. Then f ∗ ψ is subordinate to ϕ ∗ ψ in D.

Lemma 2.4. [2] Let Pn be the set of all polynomials of degree n, n ≥ 2. Assume
that Q ∈ Pn has all its critical points ζj in D, j = 1, 2, . . . , n− 1. Let P ∈ Pn satisfy
P (0) = Q(0) and

Q(ζj) /∈ P (D), j = 1, 2, . . . , n− 1.

Then P ≺ Q in D.

Lemma 2.5. [9] Given a polynomial,

(2.1) r(z) = a0 + a1z + a2z
2 + ...+ anz

n

of degree n, let

(2.2) Mk = det

B̄T
k Ak

ĀT
k Bk

 (k = 1, 2, ..., n),

where Ak and Bk are triangular matrices

Ak =


a0 a1 · · · ak−1

0 a0 · · · ak−2

...
...

. . .
...

0 0 · · · a0

 , Bk =


ān ān−1 · · · ān−k+1

0 ān · · · ān−k+2

...
...

. . .
...

0 0 · · · ān

 .
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Then the polynomial r(z) has all its zeros inside the unit circle |z| = 1 if and only
if the determinants M1,M2, ...,Mn are all positive.

3. Main Results

We begin with the following example which shows that the subscript 2 in The-
orem 1.1 can not be replaced with 3, in general.

Example 3.1. Let I(z) = z/(1− z) be the right half plane mapping which maps D
onto {w ∈ C : ℜ(w) > −1/2}. This function is a distinguished member of the class
K . We claim that

V3(z, I) ⊀ σ
(1)
3 (z, I)

in D. We note that

σ
(1)
3 (z, I) = z +

2

3
z2 +

1

3
z3

and

V3(z, I) =
3

4
z +

3

10
z2 +

1

20
z3.

Now ζ1 = (−2+ i
√
5)/3, ζ2 = (−2− i

√
5)/3 are the only critical points of σ

(1)
3 (z, I)

and both lie on |z| = 1. As V3(0, f) = σ
(1)
3 (0, f), therefore, in view of Lemma 2.4, if

V3(z, I) ≺ σ
(1)
3 (z, I), we must have σ

(1)
3 (ζj , I) /∈ V3(D, I), j = 1, 2. But this will be

the case if all the zeros of the polynomials ϕj(z) = V3(z, I) − σ
(1)
3 (ζj , I), j = 1, 2,

lie outside the circle |z| = 1. First consider

ϕ1(z) =
1

20
z3 +

3

10
z2 +

3

4
z +

38− i10
√
5

81
.

Then all the zeros of ϕ1(z) will lie outside the circle |z| = 1 if and only if all the
zeros of the polynomial

ϕ1

(
1

z

)
=

1

20
+

3

10
z +

3

4
z2 +

(
38− i10

√
5

81

)
z3

lie inside the circle |z| = 1. Now comparing ϕ1(1/z) with the polynomial r(z) (with
n = 3) in (2.1) we note that

a0 =
1

20
, a1 =

3

10
, a2 =

3

4
, a3 =

38− i10
√
5

81
.

It is easy to verify thatM1 andM2 as given by (2.2) are positive. We now calculate

M3 = det

[
B̄3

T
A3

Ā3
T

B3

]
,
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where

A3 =

 1
20

3
10

3
4

0 1
20

3
10

0 0 1
20

 , B3 =

 38+i10
√
5

81
3
4

3
10

0 38+i10
√
5

81
3
4

0 0 38+i10
√
5

81

 .
Using Mathematica [17], we get

M3 = det



38−i10
√

5
81

0 0 1
20

3
10

3
4

3
4

38−i10
√
5

81
0 0 1

20
3
10

3
10

3
4

38−i10
√

5
81

0 0 1
20

1
20

0 0 38+i10
√
5

81
3
4

3
10

3
10

1
20

0 0 38+i10
√
5

81
3
4

3
4

3
10

1
20

0 0 38+i10
√
5

81


≈ −0.00145985.

Since M3 < 0, by Lemma 2.5 we get, ϕ1(1/z) does not have all its zeros inside the

circle |z| = 1. This implies that σ
(1)
3 (ζ1, I) ∈ V3(D, I). Similarly, we can prove that

σ
(1)
3 (ζ2, I) ∈ V3(D, I). Hence, by Lemma 2.4, V3(z, I) ⊀ σ

(1)
3 (z, I), z ∈ D.

For geometric illustration of this example, we have drawn boundaries of the do-

mains V3(D, I) and σ(1)
3 (D, I) in Figure 1. The zoomed portion of this figure clearly

shows that V3(z, I) ⊀ σ
(1)
3 (z, I).

Definition 3.2. We define a class of functions, Kβ , as under:

Kβ := {g : g(z) = (Liβ ∗ f)(z), f ∈ K , β ≥ 0}.

For β ≥ 0, as Liβ is convex and convolution of two convex functions is convex, so,
Kβ ⊂ K . Obviously, in view of (1.2) and (1.3), we have

K1 =

{∫ z

0

f(ζ)

ζ
dζ : f ∈ K , |z| < 1

}
and

(3.1) K2 =

{∫ z

0

log

(
z

ζ

)
f(ζ)

ζ
dζ : f ∈ K , |z| < 1

}
.

Lemma 3.3. Let Liβ be given by (1.1). Then the cubic polynomial σ
(1)
3 (z, Liβ) is

convex univalent in D for all β ≥ β0, where β0 (≈ 1.039) is the positive root of the
transcendental equation

(3.2) 22β+1(3β+2 − 27) + 3β(25− 3β+2) = 0.
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Figure 1: V3(∂D, I) ⊈ σ
(1)
3 (∂D, I)

Proof. We have σ
(1)
3 (z, Liβ) = z + 2

3
z2

2β
+ z3

31+β = g(z) (say).
Then

ℜ
(
1 +

zg′′(z)

g′(z)

)
= ℜ

(
z2

3β−1 + 8
3

z
2β

+ 1
z2

3β
+ 4

3
z
2β

+ 1

)
=

ℜ
(
( z2

3β−1 + 8
3

z
2β

+ 1)( z
2

3β
+ 4

3
z
2β

+ 1)
)

| z2

3β
+ 4

3
z
2β

+ 1|2
.

Thus g will be convex univalent in D provided ℜ(t(z)) ≥ 0 in D, where

t(z) =

(
z2

3β−1
+

8

3

z

2β
+ 1

)(
z2

3β
+

4

3

z

2β
+ 1

)
.

Putting z = eiθ, 0 ≤ θ < 2π , we get

T (θ) = ℜ[t(eiθ)] = 1 +
32

9

1

4β
+

3

9β
− 4

3β
+

4 cos θ

2β

(
1 +

5

3β+1

)
+

8

3β
cos2 θ.

We minimize T (θ), for θ ∈ [0, 2π). Note that

Tθ(θ) = −4 sin θ

[
1

3

5

6β
+

1

2β
+

4 cos θ

3β

]
,

and, so, critical points of T (θ) are given by

sin θ = 0, 4 cos θ = −
(
3

2

)β (
1 +

5

3β+1

)
.
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It is now easy to verify that T (θ) has global minimum value

22β+1 9β+1(3β − 1)
[
22β+1(3β+2 − 27) + 3β(25− 3β+2)

]
at the critical point given by

4 cos θ = −
(
3

2

)β (
1 +

5

3β+1

)
.

Using Mathematica [17], we conclude that min T (θ) ≥ 0 for β ≥ β0 (≈ 1.039),
where β0 is the positive root of (3.2). As, ℜ (1 + zg′′(z)/g′(z)) = 1 at z = 0, using

minimum principle for harmonic functions, we conclude that g(z) = σ
(1)
3 (z, Liβ)

maps D univalently onto a convex domain for β ≥ β0. 2

Graph of transcendental function in (3.2) is shown in Figure 2 below.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-20

20

40

60

80

≈ (1.039, 0)

Figure 2: Graph of transcendental function in eq(3.2)

Lemma 3.4. If Liβ is given by (1.1), then

V3(z, Liβ) ≺ σ
(1)
3 (z, Liβ),

in D for all β > β0, where β0 is same as in Lemma 3.3.

Proof. As Liβ(z) = z +
∞∑

n=2
(zn/nβ), we have

σ
(1)
3 (z, Liβ) = z +

2

3

z2

2β
+

1

3

z3

3β
,

and

V3(z, Liβ) =
3

4
z +

3

10

z2

2β
+

1

20

z3

3β
.

In view of Lemma 3.3 and Definition 2.1, it suffices to show that the sequence
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{3/4, 9/20, 3/20, 0, 0, ...} is a subordinating factor sequence. Applying Lemma 2.2,
this will be true if

ℜ(H(z)) > 0, z ∈ D,

where

H(z) = 1 + 2

(
3

4
z +

9

20
z2 +

3

20
z3
)
.

Putting z = eiθ, 0 ≤ θ < 2π, in H(z) and then taking the real part we get

ℜ(H(eiθ)) = 1 +
3

2

(
cos θ +

3

5
cos 2θ +

1

5
cos 3θ

)
=

1

10

[
1 + 3

(
2 cos θ + 6 cos2 θ + 4 cos3 θ

)]
.(3.3)

On calculating the critical points, and by simple calculations, we can easily verify
that (3.3) has minimum value at cos θ = −1/(3 +

√
3) and this minimum value is

equal to (3−
√
3)/30 = 0.042..., which is certainly greater than zero. As ℜ(H(z)) = 1

at z = 0, so we conclude that ℜ(H(z)) > 0 in D, by minimum principle for harmonic
functions. 2

In Figure 3, we have drawn boundaries of the domains V3(D, Liβ) and

σ
(1)
3 (D, Liβ), taking β = 2.

-1.0 -0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

σ
(1)
3 (∂D, Li2)

V3(∂D, Li2)

Figure 3: V3(∂D, Li2) ⊂ σ
(1)
3 (∂D, Li2)
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Theorem 3.5. Let β0 be the number as in Lemma 3.3. Then for all real numbers
β, β ≥ β0, and for all f ∈ K , we have,

V3(z, Liβ ∗ f) ≺ σ
(1)
3 (z, Liβ ∗ f),

in D; or, equivalently,
V3(z, g) ≺ σ

(1)
3 (z, g),

in D for all g ∈ Kβ (β ≥ β0).

Proof. By Lemma 3.3, σ
(1)
3 (z, Liβ) is convex univalent in D for all β ≥ β0.

The proof, therefore, follows from Lemma 2.3 and Lemma 3.4 and observing that

σ
(1)
3 (z, Liβ ∗ f) = σ

(1)
3 (z, Liβ) ∗ f. 2

If we choose β = 2 in above Theorem 3.5, we get, in view of (3.1), the following
result:

Corollary 3.6. For all f ∈ K ,

V3

(
z,

∫ z

0

log

(
z

ζ

)
f(ζ)

ζ
dζ

)
≺ σ

(1)
3

(
z,

∫ z

0

log

(
z

ζ

)
f(ζ)

ζ
dζ

)
,

in D.

If f ∈ S2, then zf
′ ∈ K and Liβ ∗ zf ′ = Liβ−1 ∗ f. Thus we get:

Corollary 3.7. For all real numbers β, β ≥ β0, and for all f ∈ S2, we have,

V3(z, Liβ−1 ∗ f) ≺ σ
(1)
3 (z, Liβ−1 ∗ f),

in D. Here, the number β0 is same as in Lemma 3.3.

Taking β = 2 in Corollary 3.7 and noting that Li1 ∗ f = − log(1 − z) ∗ f =∫ z

0
(f(ζ)/ζ) dζ, we obtain:

Corollary 3.8. For all f ∈ S2, we have,

V3

(
z,

∫ z

0

f(ζ)

ζ
dζ

)
≺ σ

(1)
3

(
z,

∫ z

0

f(ζ)

ζ
dζ

)
,

in D.

Remark 3.9. In 1990, Komatu [5] introduced the integral operator, Lβ
c : A → A,

by

Lβ
c [f ](z) :=

(1 + c)β

Γ(β)

∫ 1

0

(
log

1

t

)β−1

tc−1f(tz)dt (c > −1, β ≥ 0).
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It is easy to verify that if f(z) = z +
∑∞

n=2 anz
n, then Lβ

c [f ] defined above can be
expressed by the series expansion as follows:

Lβ
c [f ](z) = z +

∞∑
n=2

(
c+ 1

c+ n

)β

anz
n.

In view of (1.1), we obtain:

L
β
0 [f ](z) = (Liβ ∗ f)(z).

Therefore, Theorem 3.5 can be restated as under:

Theorem 3.10. For all real numbers β, β ≥ β0, and for all f ∈ K , we have

V3

(
z,Lβ

0 [f ]
)
≺ σ

(1)
3

(
z,Lβ

0 [f ]
)
,

in D, where the number β0 is as in Lemma 3.3.
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Theory Appl., 21(1993), 279–285.

[15] S. Singh and R. Singh, Subordination by univalent functions, Proc. Amer. Math. Soc.,
82(1)(1981), 39–47.

[16] H. S. Wilf, Subordinating factor sequence for convex maps of the unit circle, Proc.
Amer. Math. Soc., 12(1961), 689–693.

[17] Wolfram Research, Inc., Mathematica, Version 11.0, Champaign, IL, 2016.

[18] M. Yadav, S. Gupta and S. Singh, Subordination of Cesàro means of convex functions,
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