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ABSTRACT. Recently, Zhao, Wang, and Pu introduced and studied new concepts of nonnil-
commutative diagrams and nonnil-projective modules. They proved that an R-module that
is nonnil-isomorphic to a projective module is nonnil-projective, and they proposed the
following problem: Is every nonnil-projective module nonnil-isomorphic to some projective
module? In this paper, we delve into some new properties of nonnil-commutative diagrams
and answer this problem in the affirmative.

1. Introduction

In this paper, all rings are assumed to be commutative with non-zero identity
and all modules are assumed to be unitary. For a ring R, we denote by Nil(R) and
Z(R) the ideal of all nilpotent elements of R and the set of all zero-divisors of R,
respectively. A ring R is called a PN-ring if Nil(R) is a prime ideal of R and a
ZN-ring if Z(R) = Nil(R). An ideal I of R is said to be nonnil if I ¢ Nil(R).

Recall from [1] that a prime ideal P of R is said to be divided if it is comparable
to every ideal of R. Let 3 := {R | R be a commutative ring, and Nil(R) be a
divided prime ideal of R}. If R € H, then R is called a ¢-ring. A ¢-ring is called
a strongly ¢-ring if it is also a ZN-ring. Recall from [1] that for a ¢-ring R with
total quotient ring T'(R), the map ¢ : T'(R) — Ryii(r) such that ¢ (g) =Y is aring
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homomorphism, and the image of R, denoted by ¢(R), is a strongly ¢-ring. The
classes of ¢-rings and strongly ¢-rings are good extensions of integral domains to
commutative rings with zero-divisors. In 2002, Badawi [6] generalized the concept
of Noetherian rings to that of nonnil-Noetherian rings in which all nonnil ideals
are finitely generated. He showed that a ¢-ring R is nonnil-Noetherian if and
only if ¢(R) is nonnil-Noetherian, if and only if R/Nil(R) is a Noetherian domain.
Generalizations of Dedekind domains, Priifer domains, Bézout domains, pseudo-
valuation domains, Krull domains, valuation domains, Mori domains, piecewise
Noetherian domains, and coherent domains to the context of rings that are in the
class H are also introduced and studied. We recommend [2, 3, 5, 7, 8, 9, 10, 11] for
studying the ring-theoretic characterizations on ¢-rings.
To investigate module-theoretic characterizations on ¢-rings, the authors [12, 14,
, 18, 19, 21] introduce nonnil-injective modules, ¢-projective, and ¢-flat modules,
and characterize nonnil-Noetherian rings, ¢-von Neumann regular rings, nonnil-
coherent rings, ¢-coherent rings, ¢-Dedekind rings, and ¢-Priifer rings. Let M be
an R-module and set

Ntor(M) := {z € M | sx =0 for some s € R\ Nil(R)}.

If Ntor(M) = M, then M is called a ¢-torsion module, and if Ntor(M) = 0, then M
is called a ¢-torsion-free module. Recall from [18] that an R-module F' is said to be
¢-flat if for every R-monomorphism f : A — B with Coker(f) being a ¢-torsion R-
module, we have 1p®p f : F®prA — F®prB is an R-monomorphism; equivalently,

Torf(F, M) = 0 for every ¢-torsion R-module M (see for instance [15, 16, 18]). If
R is a PN-ring, define ¢ : R — Ryi(g) by ¢(r) = { for every r € R. Then ¢(R)
is a ZN-ring. In [17], Zhao defined the map 1 : M — Myiry by ¥(z) = § for

every x € M. This makes (M) a ¢(R)-module. If f : M — N 1s a homomorphism
of R-modules, then f induces naturally a ¢(R)-homomorphism f : (M) — (N)
such that f (%) = @ for z € M. A sequence of R-modules and homomorphisms

AL B s called ¢-exact if the ¢(R)-sequence: (A) ER Y(B) % (0) is exact,
and an R-module P is said to be ¢-projective (resp., ¢-free) if ¢(P) is projective
(resp., free) as a ¢(R)-module. Let R be a PN-ring and let f : A — B be a
homomorphism of R-modules. Set

NKer(f) :={a € A|sf(a) =0 for some s € R\ Nil(R)} and

NIm(f) :={b€ B | sb=sf(a) for some a € A and s € R\ Nil(R)}.

Because Nil(R) is prime, NKer(f) is a submodule of A, called the nonnil-kernel
of f, and NIm(f) is a submodule of B, called the nonnil-image of f. We set
NCoker(f) := B/NIm(f). It is easy to verify that Ker(f) + Ntor(A) C NKer(f)
and Im(f)+ Ntor(B) = NIm(f). Let A,B,C,D be R-modules and f: A — B,g:

— D,h : A —- C,k : C — D be homomorphisms of R-modules. Then the
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following diagram:

c—t5Dp
is said to be nonnil-commutative if NIm(gf — kh) = Ntor(D); equivalently,

NKer(gf — kh) = Ntor(A4). A sequence of R-modules and homomorphisms A EN
B % C is called a nonnil-complex (resp., a nonnil-exact sequence) if it is ¢-complex
(resp., ¢-exact); equivalently, NIm(f) C NKer(g) (resp., NIm(f) = NKer(g)) ac-
cording to [17, Theorem 2.6]. A homomorphism f : A — B of R-modules is

called a nonnil-monomorphism if NKer(f) = Ntor(4), equivalently 0 — A ENY:
is a nonnil-exact sequence; f is called a nonnil-epimorphism if NIm(f) = B (i.e.,

NCoker(f) = 0), equivalently A 4 B = 0 is a nonnil-exact sequence. Also f is
called a nonnil-isomorphism if there exists a homomorphism g : B — A such that
NIm (14 — gf) = Ntor(A) and NIm (15 — fg) = Ntor(B). If there exists a nonnil-
isomorphism f : A — B, we say that A and B are nonnil-isomorphic, denoted

by A X B. Note that if f : A — B is a nonnil-isomorphism, then f is both a
nonnil-monomorphism and a nonnil-epimorphism. Interestingly, a homomorphism
f of R-modules is both a nonnil-monomorphism and a nonnil-epimorphism without
being a nonnil-isomorphism (see [20]). Following [20], an R-module P is said to be
nonnil-projective if given any diagram of module homomorphisms

h /
e Jf
)4

B—2s0—>0

with the bottom row nonnil-exact, there is a homomorphism h : P — B making
this diagram nonnil-commutative. Also an R-module Fj is said to be N-free if it is
nonnil-isomorphic to a free module. Following [20, Theorem 3.7], an R-module is
nonnil-projective if and only if it is a direct summand of an N-free module. If an R-
module P is nonnil-isomorphic to a projective module, then P is nonnil-projective
(cf. [20, Corollary 3.8]). Afterward, they proposed an interesting problem as follows.

Problem: Is every nonnil-projective module nonnil-isomorphic to some projective
module?

One of the main aims of this paper is to answer this problem. Section 2 studies
some new properties of nonnil-commutative diagrams and nonnil-exact sequences.
In the last section, we solved the previous problem in the affirmative: An R-module
is nonnil-projective if and only if it is nonnil-isomorphic to a projective module
(Theorem 3.1 and Remark 3.6). In this paper, R always denotes a PN-ring.
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2. On Nonnil-Commutative Diagrams
We start this section by providing a nonnil-analog of Five Lemma.

Theorem 2.1. Consider the following nonnil-commutative diagram with exact
rows:

(1) If a and 7 are nonnil-monomorphisms and § is a nonnil-epimorphism, then
B is a nonnil-monomorphism.

(2) If a and 7 are nonnil-epimorphisms and u is a nonnil-monomorphism, then
B is a nonnil-epimorphism.

Proof. (1) Let b € NKer(3). Then there exists t; € R\Nil(R) such that ¢;3(b) =
On the other hand, there exists to € R\ Nil(R) such that t37y o g(b) = t2g’ o B(b).
Hence t1tay o g(b) = t2g’(t15(b)) = 0. Therefore, g(b) € NKer(y). Since 7 is a
nonnil-monomorphism, there exists t3 € R\ Nil(R) such that ¢3g(b) = 0, and so
b € NKer(g) = NIm(f). Then t4b = t4f(a) for some a € A and ¢4, € R\ Nil(R).
Hence ¢4(8 o f(a) — f' o a(a)) = t4(B(b) — f'(a(a)). Since a € A, it follows that
ts(f' oa(a) — B o f(a)) =0 for some t5 € R\ Nil(R). Therefore

0 = titats(f o a(a) — fo f(a))
= —t1t5t4(ﬁ(b) + f/ o a(a))
= —t5t4ﬁ(t1b) + t1t4t5f/ o a(a)
= titatsf o ala).

Hence a(a) € NKer(f') = NIm(h), and so tga(a) = tgh'(z') for some tg € R\Nil(R)
and 2’ € D’. Since ¢ is a nonnil-epimorphism, there exist some x € D and t; €
R\ Nil(R) such that ¢;d(z) = t72’. Hence

tetra(a) = t7t6h( )
= tgh!(t7a’)
= tsh’(t76(a¢))
= tgt7h’ o d(w).

On the other hand, since z € D, it follows that ¢tsh'd(x) = tsah(z) for some
ts € R\Nil(R). So tgtrtsa(a) = tetrtgh’od(x) = tetrtsaoh(x), and hence tgtrtga(a—
h(z)) = 0. Therefore, a — h(z) € NKer(a) = Ntor(A), and hence there exists
tg € R\ Nil(R) such that tga = toh(z). Since h(x) € Im(h) C NIm(h) = NKer(f),
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we get t1of o h(z) = 0 for some t19 € R\ Nil(R). Then

t4t9t10b = t9t10t4f(a)
= tiotaf(toh(a))
= lalotiof o h(a) =0.

Therefore, tb = 0 with ¢ := t4tot10 € R\ Nil(R), and so b € Ntor(B). Thus § is a
nonnil-monomorphism.

(2) Let ¥’ € B’. Since v is a nonnil-epimorphism, there exist ¢ € C and t; €
R\ Nil(R) such that ¢1v(c) = t1¢'(b'). Nonnil-commutativity of the right square
gives top o k(c) = tajk’ o y(c) for some ty € R\ Nil(R). Then

titapo k(c) = tak'(t17(c))
tok! (t1g' (b))
= titak' o g'(V).

Since ¢'(V') € Im(g’) € NIm(g') = NKer(k'), there exists t3 € R\ Nil(R) such
that t3k’ o ¢'(b') = 0, and so titatsp o k(¢) = 0. Therefore, k(c) € NKer(y) =
Ntor(E). Consequently there exists t4 € R\ Nil(R) such that t4k(c) = 0, and
hence ¢ € NKer(k) = NIm(g), that is, tsc = t59(b) for some t5 € R\ Nil(R) and
b € B. On the other hand, since b € B, there exists tg € R\ Nil(R) such that
tey o g(b) = teg’ o B(b). Then

titsteg’ (') = titstey(c)
= titey(tsg(b)
= t1t5tﬁg/ o} ﬂ(b)

Thus titsteg’ (b — 8(b)) = 0, and so V' — 5(b) € NKerg’ = NIm(f’). Hence there
exist t7 € R\ Nil(R) and o’ € A’ such that t7()' — (b)) = tzf'(a’). Since «
is a nonnil-epimorphism, there exist some a € A and ts € R\ Nil(R) such that
tsa(a) = tga’. Hence

tst7 (' — B(b)) = tstr f'(a') = trts f' o a(a).

Since a € A, there exists tg € R\ Nil(R) such that tgf’ o a(a) = t9f o f(a), and so
t9t8t7(b/—6(b)) = t7t8t950f((1). Thus tb’ = tﬂ(b-i‘f(a) with ¢ := t7t8t9 S R\NII(R)
Consequently /3 is a nonnil-epimorphism. o

Let M be an R-module. Define ¢ : M' — My (g) such that o (z) = { for every
reM.

Proposition 2.2. Let f : A — B be an R-module homomorphism. Then
A/ NKer(f) = ¢ (Im(f))-
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Proof. Let z,y € A. Then we have:

B T ¢y () = 35 e (RANIR) : 57(0) = 550
ds € (R\Nil(R)) : sf(x —y) =0
x —y € NKer(f)

7 =g € A/ NKer(f).

1re e

Hence the homomorphism:

g+ A/ NKer(f) —= ¢ (Im (f))
f(z)

ng(f):T

is an isomorphism. O

A nonempty subset S of R is said to be a multiplicative subset if 1 € S, 0 ¢ S,
and for each a,b € S, we have ab € S. Note that if there exists s € SNNil(R), then
there exists a positive integer n such that 0 = s™ € S, a contradiction. Hence we
always assume that S NNil(R) = 0.

It is well known that if M’ 55 M % M” is an exact sequence of R-modules, then

MY 15 Mg %8 MY is also exact. The following theorem gives the nonnil-version of
this result.

Theorem 2.3. Let R be a ring, S be a multiplicative subset of R, and M’ EN

M 2 M" be a nonnil-ezact sequence of R-modules. Then ML =3 Mg % Mg is a
nonnil-ezact sequence.

Proof. Let £ € NIm(fs). Then there exist i € Rs \ Nil(Rg) and gsc—,, € Mg such

that i% St—lfs(%,') — YE@)  Thus there exists s9 € S such that sots’s;y =

s18’

sos18tf(a’) = sotf(s1s2'). Hence s1sy € NIm(f) = NKer(g) since sot € R\ Nil(R),
and so t'g(s1sy) = 0 for some ¢’ € R\ Nil(R). Therefore, % = 0, whence
%gg(%) =0 and % € Rg \ Nil(Rg). Thus ¥ € NKer(gs).

Conversely, let £ € NKer(gs). Then i% = 0 for some i € Rg \ Nil(Rg).
Thus there exists s2 € S such that tsyf(z) = 0, whence sz € NKer(f) = NIm(g)
since t € R\ Nil(R), that is, t1s0x = t1 f(2') for some 2’ € M’ and t; € R\ Nil(R).
Then

t152 x tlf(l’/) tlsgf(:c’) t1$2 z
hset - L NE

1 s s S98 1 S98
Thus £ € NIm(fs) since %22 € Rg \ Nil(Rg). O

Remark 2.4. If S := R\ Nil(R), then M’ Ly M % M" s a nonnil-exact sequence
if and only if M5 13 Mg %8 MY is exact.
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Note that a nonnil-monomorphism is not always a monomorphism (see [17]).
But if we consider K as a field and M as a K-vector space, and let R = K o« M be
the trivial extension. Then the homomorphism g : M — R defined by g(z) = (0, z)
is not a nonnil-epimorphism; in fact, (1,0) ¢ NIm(g). Now we give an example of
a nonnil-epimorphism which is not an epimorphism.

Example 2.5. Let R = Z « Z/2Z and consider g : Z — R defined by
g(a) = (a,0). Since 2(0 x Z/2Z) = 0, it follows that (0 < Z/2Z) C Ntor(R).
Then NIm(g) = Im (¢g) + Ntor(R) = R. Hence g is a nonnil-epimorphism, which is
not an epimorphism.

Proposition 2.6. Let f : M — N be an R-module homomorphism and S be a
multiplicative subset of R. Then the following statements are equivalent:

(1) f is a nonnil-monomorphism,
(2) fs is a nonnil-monomorphism.

Proof. (1) = (2) This is straightforward by Theorem 2.3.
(2) = (1) Assume that fg is a nonnil-monomorphism. Set M’ := NKer(f).

Then we have the following nonnil-exact sequence: 0 — M’ 4 M 2 N. Thus

0— Mg 5 Mg ’s N is also a nonnil-exact sequence. Hence Ntor(Mg)+1Im (ig) =
NIm(is) = NKer(fs) = Ntor(Mg), and so Mg C Ntor(Mg). Now let « € M’. Then
T € Ntor(Ms), whence i% = 0 for some i € Rs\Nil(Rg). Thus stz = 0 for some
s € S. Since Nil(R) is a prime ideal of R, st € R\ Nil(R), and so x € Ntor(M).

Therefore, NKer(f) = Ntor(M). Consequently f is a nonnil-monomorphism. O

Proposition 2.7. Let f : M — N be an R-module homomorphism. Then the
following statements are equivalent:

(1) f is a nonnil-epimorphism,
(2) fp is a nonnil-epimorphism for any prime ideal p of R,

(3) fm is a nonnil-epimorphism for any mazimal ideal m of R.

Proof. (1) = (2) Assume that f is a nonnil-epimorphism. Then M LN o0
is nonnil-exact. Let p be a prime ideal of R. Then for S := R\ p, we have

M, ﬁ> Ny, — 0 is nonnil-exact according to Theorem 2.3. Thus f, is a nonnil-
epimorphism for any prime ideal p of R.

(2) = (3) This is straightforward.

(3) = (1) Let y € N. Then ¥ € Ny, = NIm(fm) for any maximal ideal m
of R. Thus for every m € Max(R), there exist - € Ry \ Nll( m), £ € M, and

Sm € R\ m such that ;""“ ! = ;"n:f (Sm) So s amtmsmy = s amtn f(2) for some

s, € R\ m. Set S := {sy, | mis a maximal ideal of R}. Since S generates R,

there exist finite elements sy,,...,Sm, of S and ai,...,a, € R such that 1 =
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Q18m; + -+ QpSy,. Foralli=1,...,n, we have s, atm;tm,5m, Y = S, Qm, tm, (),
and S0 S0, tm, Sm,Y = SQm, tm, f(x) with s := s} sy --- sy, . Then
S0mtm, Y = SOm,tm, (alsml +---+ ansmn)y

= SOm;lm;¥15m, Y + -+ S0m,;tm; 0nSm, Y
= Samitmialf(x) + 4+ Sto‘nf(x)

= Som;tm, f(a1z+ -+ sta,x).

Since Nil(R) is a prime ideal of R, it follows that sauy,tm, € R\ Nil(R). Therefore,
y € NIm(f). O

Recall that a ring R is called a ¢-von Neumann regular ring if R/ Nil(R) is a
field [18, Theorem 4.1]. Note that if R is a ¢-von Neumann regular ring, then every
non-nilpotent element of R is a unit. We end this section with the following the-
orem, which characterizes when each nonnil-commutative diagram (resp., nonnil-
exact sequence, nonnil-monomorphism, nonnil-epimorphism, nonnil-isomorphism)
is commutative (resp., exact, monomorphism, epimorphism, isomorphism).

Theorem 2.8. Let R be a ring. Then the following conditions are equivalent:

(1) Every nonnil-commutative diagram is commutative,
2

FEvery nonnil-exact sequence is exact,

)
3) FEvery nonnil-monomorphism is a monomorphism,
) Every nonnil-epimorphism is an epimorphism,

)

(
(
(4
(5) Every nonnil-isomorphism is an isomorphism,
(

6) R is a ¢-von Neumann regular ring.
(1

Proof. (1) = (5), (2) = (3)&(5), and (6) = (2)&(3) are straightforward.

(3) = (6) Let a € R\ Nil(R) and consider the following homomorphism
f: R/Ra — 0. Since Ntor(R/Ra) = R/Ra, it follows that R/Ra = Ntor(R/Ra) C
NKer(f) € R/Ra, and so NKer(f) = Ntor(R/Ra). Hence f is a nonnil-
monomorphism, and so it is a monomorphism by (3). Then R/Ra = Ker (f) = 0,
and hence a is a unit. Consequently (R, Nil(R)) is a local ring. Hence Nil(R) is a
divided prime ideal of R. Thus R is a ¢-ring with R/ Nil(R) being a field. Therefore,
R is a ¢-von Neumann regular ring by [18, Theorem 4.1].

(4) = (6) Let a € R\ Nil(R) and consider the following homomorphism f : 0 —
R/Ra. Since Ntor(R/Ra) = R/Ra, it follows that NIm(f) = Im(f)+Ntor(R/I) =
0+ R/Ra = R/Ra. Hence f is a nonnil-epimorphism, and so it is an epimorphism.
Consequently 0 = Im (f) = R/Ra, and so a is a unit. Hence as in the above, R is
a ¢-von Neumann regular ring.

(5) = (6) Let a € R\ Nil(R). Since a(R/Ra) = 0, it is easy to verify that

R/Ra 2o (see Lemma 3.3), and so R/Ra = 0 by (5). Therefore, a is a unit, and
so as in the above, R is a ¢-von Neumann regular ring. O
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3. Characterizing Nonnil-Projective Modules Using Projective Modules

The nonnil-projective module was studied in [20] using an N-free module, a right
nonnil-split sequence, and a nonnil-projective basis. In particular, if an R-module
P is nonnil-isomorphic to a projective module Py, then P is nonnil-projective, and
they conclude their paper by proposing the following problem.

Problem: Is every nonnil-projective module nonnil-isomorphic to some projective
module?

The following theorem solves this difficulty by stating that an R-module is
nonnil-projective if and only if it is nonnil-isomorphic to a projective module.

Theorem 3.1. Let R be a ZN-ring. Then every nonnil-projective module is nonnil-
isomorphic to some projective module.

We need simple but necessary lemmas to prove Theorem 3.1.
Lemma 3.2. If A; ~ By and Ay ~ By, then A, @ Ay X B, @ B,.

Proof. Let f1 : Ay — Bj and f5 : Ay — B3 be two nonnil-isomorphisms. Then there
exist two homomorphisms ¢g; : By — A; and go : By — A such that NIm(14, —
fiog1) = Ntor(A;), NIm(1p, —g10f1) = Ntor(B1), NIm(1 4, — fooge) = Ntor(A;),
and NIm(1p, — g2 o f2) = Ntor(B3). Define
f:Al@Ag%Bl@BQ by
(x1,22) = f(w1,22) = (f1(21), f2(22))

and
g:B1®By = A @ Ay by

(w1, 22) = g(w1,22) = (91(21), g2(22)).
Then it is easy to verify that:

Nlm(1A1€BA2 - f © g) = NIm(1A1 - fl © gl) D NIm(lAz - f2 © 92)
= Ntor(A4;) ® Ntor(As)
= NtOI’(Al D AQ)

and

NIm(1p,¢B, —gof) = NIm(lp, —gio fi) ®NIm(lp, — g2 0 fo)
= Ntor(B;) @ Ntor(Bs)
NtOI‘(Bl D B2)

Hence Al D Ag g’ Bl D BQ. O



10 H. Kim, N. Mahdou and E. H. Oubouhou

Lemma 3.3. Let M be an R-module. Then M N 0 if and only if M is a ¢-torsion
R-module.

Proof. Let f : M — 0 be a nonnil-isomorphism. Then NIm(15; — f00) = Ntor(M).
Since NIm(15; — f 00) = NIm(1,7) = M, we get M = Ntor(M).

Conversely, assume that M = Ntor(M). Then f : M — 0 is a nonnil-
isomorphism since NIm(1,7) = M = Ntor(M). O

For any submodule N of an R-module M and any multiplicative subset S of R,
we define

SM(N):={x € M |sx e N for some s € S},

called the S-component of N in M. If no confusion can arise, we will also write
S(N) instead of SM(N). From this point on, set S := R\ Nil(R).

Lemma 3.4. Let f : A — B be a nonnil-isomorphism and N be a submodule of A.
Then S(N) X f(S(N)).

Proof. Let g : B — A such that NIm(14 —go f) = Ntor(A) and NIm(1p — fog) =
Ntor(B). Define fgny : S(N) — f(S(N)) as the restriction of f on S(N). Let
y = f(n') € f(S(N)) with n’ € N. Then there exists t; € R\ Nil(R) such
that tyn’ € N. On the other hand, since NIm(14 — g o f) = Ntor(A), we get
n' —(go f)(n’) € Ntor(A). Then ton' = to(f o g)(n') for some t2 € R\ Nil(R), and
hence tot19(y) = totin’ € N. Therefore, f(y) € S(N) and it is easy to verify that
NIm(1s(n) —gr(s(vy) © fsvy) = Ntor(S(N)) and NIm(15s(n)) — fs(v) 09 (s(vy)) =

Ntor(f(S(N))). Hence S(N) ~ f(S(N)). 0

Lemma 3.5. If N is a direct summand of A, then S(N) N,

Proof. Let A = N @ L for some submodule L of A. Let x = n+1 € S(N)
with n € N and !l € L. Then tx = tn +tl € N for some t € R\ Nil(R). Then
tl =tr—tn € NNL = 0, and so t/ = 0, that is, ¢ € Ntor(L). Therefore,
S(N) C N @ Ntor(L).

Conversely, let  =n+1 € N @ Ntor(L). Then tI = 0 for some t € R\ Nil(R).
Hence tz = tn € N, and so € S(N). Consequently S(N) = N @& Ntor(L). Since

Ntor(L) 20 by Lemma 3.3, S(IV) N according to Lemma 3.2. O

Proof of Theorem 3.1. Let P be a nonnil-projective module. Then by [20,
Theorem 3.7], P is a direct summand of an N-free module. Hence there is a free R-
module F' such that A = P&L is nonnil-isomorphic to F'. Let f : A — F be a nonnil-
isomorphism. Our aim now is to show that F' = f(P)® f(L). For this,letg: F' — A
such that NIm(14 — g o f) = Ntor(A4) and NIm(1r — f o g) = Ntor(F'). Since F is
a free R-module and Z(R) = Nil(R), it follows from [13, Example 1.6.12 (1)] that
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Ntor(F') = tor(F) = 0, and hence Im (1p — fog) C NIm(1p — fog) = Ntor(F) = 0.
Therefore, f is an epimorphism, that is, F' = f(A). Consequently F' = f(P)+ f(L).

Let y € f(P) N f(L). Then there exist x € P and | € L such that y = f(z) =
f(1). Thus f(xz —1) =0, and so x — I € Ker (f) C NKer(f) = Ntor(A). Then there
exists a non-nilpotent element ¢ € R such that tx = tl. Since tx =tl € PN L =0,
it follows that tx = 0, whence ty = f(tz) = 0. Then y = 0 since F is a free
R-module. Thus F' = f(P) ® f(L). Therefore, f(P) is a projective R-module. By

Lemma 3.5, P X S(P), and then P R f(S(P)) according to Lemma 3.4. Note that
f(S(P)) = f(P®Ntor(L)) = f(P)+ f(Ntor(L)). Since f(Ntor(L)) C Ntor(F') =0,

we get f(S(P)) = f(P). Thus P X f(P) and f(P) is a projective R-module. O

Note that Lemma 3.2 can be used to provide another demonstration of [20,
Corollary 3.8] as shown below.

Remark 3.6. If P is nonnil-isomorphic to a projective module, then P is nonnil-
projective.

N
Proof. Let K be a projective module such that P ~ K. Since K is projective, it is
N
a direct summand of a free module F', and so F' = K @ L for some L. Since P ~ K,

it follows from Lemma 3.2 that P& L g K &L =F. Hence P is a direct summand
of an N-free module. Then P is a nonnil-projective module by [20, Theorem 3.7].
O

Lemma 3.7. Let R be a ring. If Ay g Bi and As g Bs, then A1 ® Ay g B, ® Bs.

Proof. Let fi : Ay — By and f5 : Ao — Bs be two nonnil-isomorphisms. Then there
exist two homomorphisms ¢g; : By — A; and go : By — As such that NIm(1p, —
fiog1) = Ntor(B1), NIm(14, —g10 f1) = Ntor(A;), NIm(1p, — f2a0g2) = Ntor(Bs),
and NIm(14, — g2 0 fo) = Ntor(A4sz). Set A:= A1 ® Ay, B:= B1 ® By, f := f1® fa,
and ¢ := g1 ® g2. Then for every (a1 ® as) € A; ® Ay (resp., (b1 ® b2) € B; ® Bs)
we have f(a1 ® a2) = fi(a1) ® fa(az) (resp., g(b1 ® b2) = g1(b1) ® g2(b2)). By
[13, Example 2.2.10] we get that fog = (fi 0 g1) ® (f2 0 g2). Our aim now is
to show that NIm(14 — g o f) = Ntor(A4) and NIm(1g — f o g) = Ntor(B). Since
Im(14—gof)+Ntor(A) = NIm(14—gof), to show that NIm(14—gof) = Ntor(4), it
is enough to show that Im(14—go f) C Ntor(A). Let a1 ®ag) € A1 ®A;. Then there
exist s1, s2 € R\Nil(R) such that s1(g10f1(a1)—a1) = 0 and sa2(gz20 fa(az)—az) = 0.
Thus go f(a; ® az) — a1 @ az = g1 © fi(a1) ® g2 o fa(az) — a1 ® az, which implies
that s(go f(a1 ® az) — a1 ® az) = 0 with s = s;s2 € R\ Nil(R). Similarly, we can
deduce that Im(14 —go f) C Ntor(A), since Ntor(A) is a submodule of A. Therefore
NIm(14—gof) = Ntor(A). Likewise, we can deduce that NIm(15— fog) = Ntor(B).

O

Corollary 3.8. Let R is a ZN-ring and let P, and P> be monnil-projective R-
modules. Then Py ® Ps is nonnil-projective.
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Proof. Let P{ and Pj be projective modules such that P, X P} and P, 2 Pj. Then

N
by Lemma 3.7, Py ® P, ~ P{® Pj. Since P and Py are projective modules, P{ @ P,
is projective by [13, Theorem 2.3.8]. Hence P; ® P, is nonnil-projective. a

Corollary 3.9. Let R be a local ring. Then every nonnil-projective module is
N -free.

Proof. Let P be a nonnil-projective R-module. Then there exists a projective R-

module Py such that P 2 Py. Since R is a local ring, P is free by [13, Theorem
2.3.17]. Hence P is nonnil-isomorphic to a free R-module. Thus P is N-free. O

Theorem 3.10. Let R be a ZN-ring and I be a nonnil-projective nonnil-ideal of
R. Then I is finitely generated.

Proof. Let I be a nonnil-projective nonnil-ideal of R. Then by [20, Theorem
3.9], there exist elements {z; |i € T'} C I and R-homomorphisms {f; |i €'} C
Homg(I, R) such that:

(1) If € I, then almost all f;(z) =0,

(2) If © € I, then there exists an element s € R\ Nil(R) such that sz =

Let a € I be a non-nilpotent element. Then there exists a finite subset K of T’
such that f;(a) = 0 for all i € T'\ K. Now let x € I. Then there exists an ele-
ment s € R\ Nil(R) such that sz = s}, fi(x)z;. Hence asz = as)_, fi(x)x; =
sy xfi(a)r; =83 cx wfr(a)zy = sad o fu(x)xy. Since sa is regular, we con-
clude that = = 37, - fr(z)xr. Therefore, I =37, _, Ry is finitely generated. O

Let M be a nonnil-torsion-free R-module. Then M is nonnil-projective if and
only if M is projective by [20, Lemma 4.1]. In particular, if R is a ZN-ring and [ is
an ideal of R, then I is nonnil-projective if and only if I is projective. Note that if
I is a nil ideal (i.e, I C Nil(R)), then I is not projective by [13, Proposition 6.7.12],
and so it is not nonnil-projective. It is well known that in an integral domain every
projective ideal is finitely generated according to [13, Corollary 5.2.7]. The follow-
ing corollary gives a generalization of this fact.

Corollary 3.11. Let R be a ZN-ring. Then every projective ideal of R is finitely
generated.

We know that every projective module is flat. So a natural question is whether
a nonnil-projective module is ¢-flat. The following example shows that a nonnil-
projective module is not always ¢-flat.

Example 3.12. Let R be a ring with w.gl. dim(R) > 2 (for example R = k[X,Y]
with k a field). Then there exists a non-zero ideal I of R such that R/I is not flat.
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N
Hence R/I is not a ¢-flat module, but it is nonnil-projective since R/I ~ 0.

Remark 3.13. Note that a nonnil-projective module is not necessarily ¢-flat.
However, if every R-module is nonnil-projective, then every R-module is ¢-flat by

[

, Theorem 4.5].
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