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Abstract. Recently, Zhao, Wang, and Pu introduced and studied new concepts of nonnil-

commutative diagrams and nonnil-projective modules. They proved that anR-module that

is nonnil-isomorphic to a projective module is nonnil-projective, and they proposed the

following problem: Is every nonnil-projective module nonnil-isomorphic to some projective

module? In this paper, we delve into some new properties of nonnil-commutative diagrams

and answer this problem in the affirmative.

1. Introduction

In this paper, all rings are assumed to be commutative with non-zero identity
and all modules are assumed to be unitary. For a ring R, we denote by Nil(R) and
Z(R) the ideal of all nilpotent elements of R and the set of all zero-divisors of R,
respectively. A ring R is called a PN-ring if Nil(R) is a prime ideal of R and a
ZN-ring if Z(R) = Nil(R). An ideal I of R is said to be nonnil if I ⊈ Nil(R).

Recall from [4] that a prime ideal P of R is said to be divided if it is comparable
to every ideal of R. Let H := {R | R be a commutative ring, and Nil(R) be a
divided prime ideal of R}. If R ∈ H, then R is called a ϕ-ring. A ϕ-ring is called
a strongly ϕ-ring if it is also a ZN-ring. Recall from [1] that for a ϕ-ring R with
total quotient ring T (R), the map ϕ : T (R) → RNil(R) such that ϕ

(
b
a

)
= b

a is a ring
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homomorphism, and the image of R, denoted by ϕ(R), is a strongly ϕ-ring. The
classes of ϕ-rings and strongly ϕ-rings are good extensions of integral domains to
commutative rings with zero-divisors. In 2002, Badawi [6] generalized the concept
of Noetherian rings to that of nonnil-Noetherian rings in which all nonnil ideals
are finitely generated. He showed that a ϕ-ring R is nonnil-Noetherian if and
only if ϕ(R) is nonnil-Noetherian, if and only if R/Nil(R) is a Noetherian domain.
Generalizations of Dedekind domains, Prüfer domains, Bézout domains, pseudo-
valuation domains, Krull domains, valuation domains, Mori domains, piecewise
Noetherian domains, and coherent domains to the context of rings that are in the
class H are also introduced and studied. We recommend [2, 3, 5, 7, 8, 9, 10, 11] for
studying the ring-theoretic characterizations on ϕ-rings.

To investigate module-theoretic characterizations on ϕ-rings, the authors [12, 14,
17, 18, 19, 21] introduce nonnil-injective modules, ϕ-projective, and ϕ-flat modules,
and characterize nonnil-Noetherian rings, ϕ-von Neumann regular rings, nonnil-
coherent rings, ϕ-coherent rings, ϕ-Dedekind rings, and ϕ-Prüfer rings. Let M be
an R-module and set

Ntor(M) := {x ∈M | sx = 0 for some s ∈ R \Nil(R)}.

If Ntor(M) =M , thenM is called a ϕ-torsion module, and if Ntor(M) = 0, thenM
is called a ϕ-torsion-free module. Recall from [18] that an R-module F is said to be
ϕ-flat if for every R-monomorphism f : A −→ B with Coker(f) being a ϕ-torsion R-
module, we have 1F⊗Rf : F⊗RA −→ F⊗RB is an R-monomorphism; equivalently,
TorR1 (F,M) = 0 for every ϕ-torsion R-module M (see for instance [15, 16, 18]). If
R is a PN-ring, define ϕ : R → RNil(R) by ϕ(r) = r

1 for every r ∈ R. Then ϕ(R)
is a ZN-ring. In [17], Zhao defined the map ψ : M → MNil(R) by ψ(x) = x

1 for
every x ∈M . This makes ψ(M) a ϕ(R)-module. If f :M → N is a homomorphism

of R-modules, then f induces naturally a ϕ(R)-homomorphism f̃ : ψ(M) → ψ(N)

such that f̃
(
x
1

)
= f(x)

1 for x ∈ M . A sequence of R-modules and homomorphisms

A
f→ B

g→ C is called ϕ-exact if the ϕ(R)-sequence: ψ(A)
f̃→ ψ(B)

g̃→ ψ(C) is exact,
and an R-module P is said to be ϕ-projective (resp., ϕ-free) if ψ(P ) is projective
(resp., free) as a ϕ(R)-module. Let R be a PN-ring and let f : A → B be a
homomorphism of R-modules. Set

NKer(f) := {a ∈ A | sf(a) = 0 for some s ∈ R \Nil(R)} and

NIm(f) := {b ∈ B | sb = sf(a) for some a ∈ A and s ∈ R \Nil(R)}.

Because Nil(R) is prime, NKer(f) is a submodule of A, called the nonnil-kernel
of f , and NIm(f) is a submodule of B, called the nonnil-image of f . We set
NCoker(f) := B/NIm(f). It is easy to verify that Ker(f) + Ntor(A) ⊆ NKer(f)
and Im(f)+ Ntor(B) = NIm(f). Let A,B,C,D be R-modules and f : A → B, g :
B → D,h : A → C, k : C → D be homomorphisms of R-modules. Then the
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following diagram:

A
f−−−−→ B

h

y g

y
C

k−−−−→ D

is said to be nonnil-commutative if NIm(gf − kh) = Ntor(D); equivalently,

NKer(gf − kh) = Ntor(A). A sequence of R-modules and homomorphisms A
f→

B
g→ C is called a nonnil-complex (resp., a nonnil-exact sequence) if it is ϕ-complex

(resp., ϕ-exact); equivalently, NIm(f) ⊆ NKer(g) (resp., NIm(f) = NKer(g)) ac-
cording to [17, Theorem 2.6]. A homomorphism f : A → B of R-modules is

called a nonnil-monomorphism if NKer(f) = Ntor(A), equivalently 0 → A
f→ B

is a nonnil-exact sequence; f is called a nonnil-epimorphism if NIm(f) = B (i.e.,

NCoker(f) = 0), equivalently A
f→ B → 0 is a nonnil-exact sequence. Also f is

called a nonnil-isomorphism if there exists a homomorphism g : B → A such that
NIm (1A − gf) = Ntor(A) and NIm (1B − fg) = Ntor(B). If there exists a nonnil-
isomorphism f : A → B, we say that A and B are nonnil-isomorphic, denoted

by A
N≃ B. Note that if f : A → B is a nonnil-isomorphism, then f is both a

nonnil-monomorphism and a nonnil-epimorphism. Interestingly, a homomorphism
f of R-modules is both a nonnil-monomorphism and a nonnil-epimorphism without
being a nonnil-isomorphism (see [20]). Following [20], an R-module P is said to be
nonnil-projective if given any diagram of module homomorphisms

P

h

��

f

��

B
g
// C // 0

with the bottom row nonnil-exact, there is a homomorphism h : P → B making
this diagram nonnil-commutative. Also an R-module F0 is said to be N -free if it is
nonnil-isomorphic to a free module. Following [20, Theorem 3.7], an R-module is
nonnil-projective if and only if it is a direct summand of an N-free module. If an R-
module P is nonnil-isomorphic to a projective module, then P is nonnil-projective
(cf. [20, Corollary 3.8]). Afterward, they proposed an interesting problem as follows.

Problem: Is every nonnil-projective module nonnil-isomorphic to some projective
module?

One of the main aims of this paper is to answer this problem. Section 2 studies
some new properties of nonnil-commutative diagrams and nonnil-exact sequences.
In the last section, we solved the previous problem in the affirmative: An R-module
is nonnil-projective if and only if it is nonnil-isomorphic to a projective module
(Theorem 3.1 and Remark 3.6). In this paper, R always denotes a PN-ring.
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2. On Nonnil-Commutative Diagrams

We start this section by providing a nonnil-analog of Five Lemma.

Theorem 2.1. Consider the following nonnil-commutative diagram with exact
rows:

D
h−−−−→ A

f−−−−→ B
g−−−−→ C

k−−−−→ E

δ

y α

y β

y γ

y µ

y
D′ h′

−−−−→ A′ f ′

−−−−→ B′ g′

−−−−→ C ′ k′

−−−−→ E′

(1) If α and γ are nonnil-monomorphisms and δ is a nonnil-epimorphism, then
β is a nonnil-monomorphism.

(2) If α and γ are nonnil-epimorphisms and µ is a nonnil-monomorphism, then
β is a nonnil-epimorphism.

Proof. (1) Let b ∈ NKer(β). Then there exists t1 ∈ R \Nil(R) such that t1β(b) = 0.
On the other hand, there exists t2 ∈ R \ Nil(R) such that t2γ ◦ g(b) = t2g

′ ◦ β(b).
Hence t1t2γ ◦ g(b) = t2g

′(t1β(b)) = 0. Therefore, g(b) ∈ NKer(γ). Since γ is a
nonnil-monomorphism, there exists t3 ∈ R \ Nil(R) such that t3g(b) = 0, and so
b ∈ NKer(g) = NIm(f). Then t4b = t4f(a) for some a ∈ A and t4 ∈ R \ Nil(R).
Hence t4(β ◦ f(a) − f ′ ◦ α(a)) = t4(β(b) − f ′(α(a)). Since a ∈ A, it follows that
t5(f

′ ◦ α(a)− β ◦ f(a)) = 0 for some t5 ∈ R \Nil(R). Therefore

0 = t1t4t5(f
′ ◦ α(a)− β ◦ f(a))

= −t1t5t4(β(b) + f ′ ◦ α(a))
= −t5t4β(t1b) + t1t4t5f

′ ◦ α(a)
= t1t4t5f

′ ◦ α(a).

Hence α(a) ∈ NKer(f ′) = NIm(h), and so t6α(a) = t6h
′(x′) for some t6 ∈ R\Nil(R)

and x′ ∈ D′. Since δ is a nonnil-epimorphism, there exist some x ∈ D and t7 ∈
R \Nil(R) such that t7δ(x) = t7x

′. Hence

t6t7α(a) = t7t6h
′(x′)

= t6h
′(t7x

′)

= t6h
′(t7δ(x))

= t6t7h
′ ◦ δ(x).

On the other hand, since x ∈ D, it follows that t8h
′δ(x) = t8αh(x) for some

t8 ∈ R\Nil(R). So t6t7t8α(a) = t6t7t8h
′◦δ(x) = t6t7t8α◦h(x), and hence t6t7t8α(a−

h(x)) = 0. Therefore, a − h(x) ∈ NKer(α) = Ntor(A), and hence there exists
t9 ∈ R \ Nil(R) such that t9a = t9h(x). Since h(x) ∈ Im(h) ⊆ NIm(h) = NKer(f),
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we get t10f ◦ h(x) = 0 for some t10 ∈ R \Nil(R). Then

t4t9t10b = t9t10t4f(a)

= t10t4f(t9h(a))

= t4t9t10f ◦ h(a) = 0.

Therefore, tb = 0 with t := t4t9t10 ∈ R \ Nil(R), and so b ∈ Ntor(B). Thus β is a
nonnil-monomorphism.

(2) Let b′ ∈ B′. Since γ is a nonnil-epimorphism, there exist c ∈ C and t1 ∈
R \ Nil(R) such that t1γ(c) = t1g

′(b′). Nonnil-commutativity of the right square
gives t2µ ◦ k(c) = t2jk

′ ◦ γ(c) for some t2 ∈ R \Nil(R). Then

t1t2µ ◦ k(c) = t2k
′(t1γ(c))

= t2k
′(t1g

′(b′))

= t1t2k
′ ◦ g′(b′).

Since g′(b′) ∈ Im(g′) ⊆ NIm(g′) = NKer(k′), there exists t3 ∈ R \ Nil(R) such
that t3k

′ ◦ g′(b′) = 0, and so t1t2t3µ ◦ k(c) = 0. Therefore, k(c) ∈ NKer(γ) =
Ntor(E). Consequently there exists t4 ∈ R \ Nil(R) such that t4k(c) = 0, and
hence c ∈ NKer(k) = NIm(g), that is, t5c = t5g(b) for some t5 ∈ R \ Nil(R) and
b ∈ B. On the other hand, since b ∈ B, there exists t6 ∈ R \ Nil(R) such that
t6γ ◦ g(b) = t6g

′ ◦ β(b). Then

t1t5t6g
′(b′) = t1t5t6γ(c)

= t1t6γ(t5g(b)

= t1t5t6g
′ ◦ β(b).

Thus t1t5t6g
′(b′ − β(b)) = 0, and so b′ − β(b) ∈ NKer g′ = NIm(f ′). Hence there

exist t7 ∈ R \ Nil(R) and a′ ∈ A′ such that t7(b
′ − β(b)) = t7f

′(a′). Since α
is a nonnil-epimorphism, there exist some a ∈ A and t8 ∈ R \ Nil(R) such that
t8α(a) = t8a

′. Hence

t8t7(b
′ − β(b)) = t8t7f

′(a′) = t7t8f
′ ◦ α(a).

Since a ∈ A, there exists t9 ∈ R \ Nil(R) such that t9f
′ ◦ α(a) = t9β ◦ f(a), and so

t9t8t7(b
′−β(b)) = t7t8t9β◦f(a). Thus tb′ = tβ(b+f(a) with t := t7t8t9 ∈ R\Nil(R).

Consequently β is a nonnil-epimorphism. 2

Let M be an R-module. Define ψ :M →MNil(R) such that ψ(x) = x
1 for every

x ∈M .

Proposition 2.2. Let f : A → B be an R-module homomorphism. Then
A/NKer(f) ∼= ψ(Im(f)).



6 H. Kim, N. Mahdou and E. H. Oubouhou

Proof. Let x, y ∈ A. Then we have:

f(x)

1
=
f(y)

1
∈ ψ(Im (f)) ⇐⇒ ∃s ∈ (R \Nil(R)) : sf(x) = sf(y)

⇐⇒ ∃s ∈ (R \Nil(R)) : sf(x− y) = 0

⇐⇒ x− y ∈ NKer(f)

⇐⇒ x̄ = ȳ ∈ A/NKer(f).

Hence the homomorphism:

g : A/NKer(f) → ψ(Im (f))

x̄ 7→ g(x̄) =
f(x)

1

is an isomorphism. 2

A nonempty subset S of R is said to be a multiplicative subset if 1 ∈ S, 0 /∈ S,
and for each a, b ∈ S, we have ab ∈ S. Note that if there exists s ∈ S ∩Nil(R), then
there exists a positive integer n such that 0 = sn ∈ S, a contradiction. Hence we
always assume that S ∩Nil(R) = ∅.

It is well known that ifM ′ f→M
g→M ′′ is an exact sequence of R-modules, then

M ′
S

fS→ MS
gS→ M ′′

S is also exact. The following theorem gives the nonnil-version of
this result.

Theorem 2.3. Let R be a ring, S be a multiplicative subset of R, and M ′ f→
M

g→ M ′′ be a nonnil-exact sequence of R-modules. Then M ′
S

fS→ MS
gS→ M ′′

S is a
nonnil-exact sequence.

Proof. Let y
s ∈ NIm(fS). Then there exist t

s1
∈ RS \ Nil(RS) and x′

s′ ∈ MS such

that t
s1

y
s = t

s1
fS(

x′

s′ ) = tf(x′)
s1s′

. Thus there exists s2 ∈ S such that s2ts
′s1y =

s2s1stf(x
′) = s2tf(s1sx

′). Hence s1sy ∈ NIm(f) = NKer(g) since s2t ∈ R \Nil(R),

and so t′g(s1sy) = 0 for some t′ ∈ R \ Nil(R). Therefore, t′g(y)
s = 0, whence

t′

1 gS(
y
s ) = 0 and t′

1 ∈ RS \Nil(RS). Thus
y
s ∈ NKer(gS).

Conversely, let x
s ∈ NKer(gS). Then t

s1

g(x)
s = 0 for some t

s1
∈ RS \ Nil(RS).

Thus there exists s2 ∈ S such that ts2f(x) = 0, whence s2x ∈ NKer(f) = NIm(g)
since t ∈ R \Nil(R), that is, t1s2x = t1f(x

′) for some x′ ∈M ′ and t1 ∈ R \Nil(R).
Then

t1s2
1

x

s
=
t1f(x

′)

s
=
t1s2f(x

′)

s2s
=
t1s2
1
fS(

x′

s2s
).

Thus x
s ∈ NIm(fS) since

t1s2
1 ∈ RS \Nil(RS). 2

Remark 2.4. If S := R \Nil(R), then M ′ f→M
g→M ′′ is a nonnil-exact sequence

if and only if M ′
S

fS→MS
gS→M ′′

S is exact.
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Note that a nonnil-monomorphism is not always a monomorphism (see [17]).
But if we consider K as a field and M as a K-vector space, and let R = K ∝M be
the trivial extension. Then the homomorphism g :M → R defined by g(x) = (0, x)
is not a nonnil-epimorphism; in fact, (1, 0) /∈ NIm(g). Now we give an example of
a nonnil-epimorphism which is not an epimorphism.

Example 2.5. Let R = Z ∝ Z/2Z and consider g : Z → R defined by
g(a) = (a, 0). Since 2(0 ∝ Z/2Z) = 0, it follows that (0 ∝ Z/2Z) ⊆ Ntor(R).
Then NIm(g) = Im (g) + Ntor(R) = R. Hence g is a nonnil-epimorphism, which is
not an epimorphism.

Proposition 2.6. Let f : M → N be an R-module homomorphism and S be a
multiplicative subset of R. Then the following statements are equivalent:

(1) f is a nonnil-monomorphism,

(2) fS is a nonnil-monomorphism.

Proof. (1) ⇒ (2) This is straightforward by Theorem 2.3.
(2) ⇒ (1) Assume that fS is a nonnil-monomorphism. Set M ′ := NKer(f).

Then we have the following nonnil-exact sequence: 0 → M ′ i→ M
f→ N . Thus

0 →M ′
S

iS→MS
fS→ NS is also a nonnil-exact sequence. Hence Ntor(MS)+Im (iS) =

NIm(iS) = NKer(fS) = Ntor(MS), and soM ′
S ⊆ Ntor(MS). Now let x ∈M ′. Then

x
1 ∈ Ntor(MS), whence

t
s1

x
1 = 0 for some t

s1
∈ RS \Nil(RS). Thus stx = 0 for some

s ∈ S. Since Nil(R) is a prime ideal of R, st ∈ R \ Nil(R), and so x ∈ Ntor(M).
Therefore, NKer(f) = Ntor(M). Consequently f is a nonnil-monomorphism. 2

Proposition 2.7. Let f : M → N be an R-module homomorphism. Then the
following statements are equivalent:

(1) f is a nonnil-epimorphism,

(2) fp is a nonnil-epimorphism for any prime ideal p of R,

(3) fm is a nonnil-epimorphism for any maximal ideal m of R.

Proof. (1) ⇒ (2) Assume that f is a nonnil-epimorphism. Then M
f→ N → 0

is nonnil-exact. Let p be a prime ideal of R. Then for S := R \ p, we have

Mp
fp→ Np → 0 is nonnil-exact according to Theorem 2.3. Thus fp is a nonnil-

epimorphism for any prime ideal p of R.
(2) ⇒ (3) This is straightforward.
(3) ⇒ (1) Let y ∈ N . Then y

1 ∈ Nm = NIm(fm) for any maximal ideal m
of R. Thus for every m ∈ Max(R), there exist tm

αm
∈ Rm \ Nil(Rm), x ∈ M , and

sm ∈ R \ m such that tm
αm

y
1 = tm

αm
fm(

x
sm

). So s′mαmtmsmy = s′mαmtmf(x) for some
s′m ∈ R \ m. Set S := {sm | m is a maximal ideal of R}. Since S generates R,
there exist finite elements sm1

, . . . , smn
of S and α1, . . . , αn ∈ R such that 1 =
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α1sm1
+ · · ·+αnsmn

. For all i = 1, . . . , n, we have s′mi
αmi

tmi
smi

y = s′mi
αmi

tmi
f(x),

and so sαmi
tmi

smi
y = sαmi

tmi
f(x) with s := s′m1

s′m2
· · · s′mn

. Then

sαmitmiy = sαmitmi(α1sm1 + · · ·+ αnsmn)y

= sαmitmiα1sm1y + · · ·+ sαmitmiαnsmny

= sαmitmiα1f(x) + · · ·+ stαnf(x)

= sαmitmif(α1x+ · · ·+ stαnx).

Since Nil(R) is a prime ideal of R, it follows that sαmi
tmi

∈ R \Nil(R). Therefore,
y ∈ NIm(f). 2

Recall that a ring R is called a ϕ-von Neumann regular ring if R/Nil(R) is a
field [18, Theorem 4.1]. Note that if R is a ϕ-von Neumann regular ring, then every
non-nilpotent element of R is a unit. We end this section with the following the-
orem, which characterizes when each nonnil-commutative diagram (resp., nonnil-
exact sequence, nonnil-monomorphism, nonnil-epimorphism, nonnil-isomorphism)
is commutative (resp., exact, monomorphism, epimorphism, isomorphism).

Theorem 2.8. Let R be a ring. Then the following conditions are equivalent:

(1) Every nonnil-commutative diagram is commutative,

(2) Every nonnil-exact sequence is exact,

(3) Every nonnil-monomorphism is a monomorphism,

(4) Every nonnil-epimorphism is an epimorphism,

(5) Every nonnil-isomorphism is an isomorphism,

(6) R is a ϕ-von Neumann regular ring.

Proof. (1) ⇒ (5), (2) ⇒ (3)&(5), and (6) ⇒ (2)&(3) are straightforward.
(3) ⇒ (6) Let a ∈ R \ Nil(R) and consider the following homomorphism

f : R/Ra→ 0. Since Ntor(R/Ra) = R/Ra, it follows that R/Ra = Ntor(R/Ra) ⊆
NKer(f) ⊆ R/Ra, and so NKer(f) = Ntor(R/Ra). Hence f is a nonnil-
monomorphism, and so it is a monomorphism by (3). Then R/Ra = Ker (f) = 0,
and hence a is a unit. Consequently (R,Nil(R)) is a local ring. Hence Nil(R) is a
divided prime ideal of R. Thus R is a ϕ-ring with R/Nil(R) being a field. Therefore,
R is a ϕ-von Neumann regular ring by [18, Theorem 4.1].

(4) ⇒ (6) Let a ∈ R\Nil(R) and consider the following homomorphism f : 0 →
R/Ra. Since Ntor(R/Ra) = R/Ra, it follows that NIm(f) = Im(f)+Ntor(R/I) =
0+R/Ra = R/Ra. Hence f is a nonnil-epimorphism, and so it is an epimorphism.
Consequently 0 = Im (f) = R/Ra, and so a is a unit. Hence as in the above, R is
a ϕ-von Neumann regular ring.

(5) ⇒ (6) Let a ∈ R \ Nil(R). Since a(R/Ra) = 0, it is easy to verify that

R/Ra
N≃ 0 (see Lemma 3.3), and so R/Ra = 0 by (5). Therefore, a is a unit, and

so as in the above, R is a ϕ-von Neumann regular ring. 2
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3. Characterizing Nonnil-Projective Modules Using Projective Modules

The nonnil-projective module was studied in [20] using an N-free module, a right
nonnil-split sequence, and a nonnil-projective basis. In particular, if an R-module
P is nonnil-isomorphic to a projective module P0, then P is nonnil-projective, and
they conclude their paper by proposing the following problem.

Problem: Is every nonnil-projective module nonnil-isomorphic to some projective
module?

The following theorem solves this difficulty by stating that an R-module is
nonnil-projective if and only if it is nonnil-isomorphic to a projective module.

Theorem 3.1. Let R be a ZN -ring. Then every nonnil-projective module is nonnil-
isomorphic to some projective module.

We need simple but necessary lemmas to prove Theorem 3.1.

Lemma 3.2. If A1
N≃ B1 and A2

N≃ B2, then A1 ⊕A2
N≃ B1 ⊕B2.

Proof. Let f1 : A1 → B1 and f2 : A2 → B2 be two nonnil-isomorphisms. Then there
exist two homomorphisms g1 : B1 → A1 and g2 : B2 → A2 such that NIm(1A1

−
f1 ◦g1) = Ntor(A1), NIm(1B1 −g1 ◦f1) = Ntor(B1), NIm(1A2 −f2 ◦g2) = Ntor(A1),
and NIm(1B2 − g2 ◦ f2) = Ntor(B2). Define

f : A1 ⊕A2 → B1 ⊕B2 by

(x1, x2) 7→ f(x1, x2) = (f1(x1), f2(x2))

and
g : B1 ⊕B2 → A1 ⊕A2 by

(x1, x2) 7→ g(x1, x2) = (g1(x1), g2(x2)).

Then it is easy to verify that:

NIm(1A1⊕A2
− f ◦ g) = NIm(1A1

− f1 ◦ g1)⊕NIm(1A2
− f2 ◦ g2)

= Ntor(A1)⊕Ntor(A2)

= Ntor(A1 ⊕A2)

and

NIm(1B1⊕B2
− g ◦ f) = NIm(1B1

− g1 ◦ f1)⊕NIm(1B2
− g2 ◦ f2)

= Ntor(B1)⊕Ntor(B2)

= Ntor(B1 ⊕B2).

Hence A1 ⊕A2
N≃ B1 ⊕B2. 2
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Lemma 3.3. Let M be an R-module. Then M
N≃ 0 if and only if M is a ϕ-torsion

R-module.

Proof. Let f :M → 0 be a nonnil-isomorphism. Then NIm(1M −f ◦0) = Ntor(M).
Since NIm(1M − f ◦ 0) = NIm(1M ) =M , we get M = Ntor(M).

Conversely, assume that M = Ntor(M). Then f : M → 0 is a nonnil-
isomorphism since NIm(1M ) =M = Ntor(M). 2

For any submodule N of an R-module M and any multiplicative subset S of R,
we define

SM (N) := {x ∈M | sx ∈ N for some s ∈ S},

called the S-component of N in M . If no confusion can arise, we will also write
S(N) instead of SM (N). From this point on, set S := R \Nil(R).

Lemma 3.4. Let f : A→ B be a nonnil-isomorphism and N be a submodule of A.

Then S(N)
N≃ f(S(N)).

Proof. Let g : B → A such that NIm(1A − g ◦ f) = Ntor(A) and NIm(1B − f ◦ g) =
Ntor(B). Define fS(N) : S(N) → f(S(N)) as the restriction of f on S(N). Let
y = f(n′) ∈ f(S(N)) with n′ ∈ N . Then there exists t1 ∈ R \ Nil(R) such
that t1n

′ ∈ N . On the other hand, since NIm(1A − g ◦ f) = Ntor(A), we get
n′ − (g ◦ f)(n′) ∈ Ntor(A). Then t2n

′ = t2(f ◦ g)(n′) for some t2 ∈ R \Nil(R), and
hence t2t1g(y) = t2t1n

′ ∈ N . Therefore, f(y) ∈ S(N) and it is easy to verify that
NIm(1S(N)−gf(S(N))◦fS(N)) = Ntor(S(N)) and NIm(1f(S(N))−fS(N)◦gf(S(N))) =

Ntor(f(S(N))). Hence S(N)
N≃ f(S(N)). 2

Lemma 3.5. If N is a direct summand of A, then S(N)
N≃ N .

Proof. Let A = N ⊕ L for some submodule L of A. Let x = n + l ∈ S(N)
with n ∈ N and l ∈ L. Then tx = tn + tl ∈ N for some t ∈ R \ Nil(R). Then
tl = tx − tn ∈ N ∩ L = 0, and so tl = 0, that is, t ∈ Ntor(L). Therefore,
S(N) ⊆ N ⊕Ntor(L).

Conversely, let x = n+ l ∈ N ⊕ Ntor(L). Then tl = 0 for some t ∈ R \ Nil(R).
Hence tx = tn ∈ N , and so x ∈ S(N). Consequently S(N) = N ⊕ Ntor(L). Since

Ntor(L)
N≃ 0 by Lemma 3.3, S(N)

N≃ N according to Lemma 3.2. 2

Proof of Theorem 3.1. Let P be a nonnil-projective module. Then by [20,
Theorem 3.7], P is a direct summand of an N -free module. Hence there is a free R-
module F such thatA = P⊕L is nonnil-isomorphic to F . Let f : A→ F be a nonnil-
isomorphism. Our aim now is to show that F = f(P )⊕f(L). For this, let g : F → A
such that NIm(1A − g ◦ f) = Ntor(A) and NIm(1F − f ◦ g) = Ntor(F ). Since F is
a free R-module and Z(R) = Nil(R), it follows from [13, Example 1.6.12 (1)] that
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Ntor(F ) = tor(F ) = 0, and hence Im (1F −f ◦g) ⊆ NIm(1F −f ◦g) = Ntor(F ) = 0.
Therefore, f is an epimorphism, that is, F = f(A). Consequently F = f(P )+f(L).

Let y ∈ f(P ) ∩ f(L). Then there exist x ∈ P and l ∈ L such that y = f(x) =
f(l). Thus f(x− l) = 0, and so x− l ∈ Ker (f) ⊆ NKer(f) = Ntor(A). Then there
exists a non-nilpotent element t ∈ R such that tx = tl. Since tx = tl ∈ P ∩ L = 0,
it follows that tx = 0, whence ty = f(tx) = 0. Then y = 0 since F is a free
R-module. Thus F = f(P )⊕ f(L). Therefore, f(P ) is a projective R-module. By

Lemma 3.5, P
N≃ S(P ), and then P

N≃ f(S(P )) according to Lemma 3.4. Note that
f(S(P )) = f(P ⊕Ntor(L)) = f(P )+f(Ntor(L)). Since f(Ntor(L)) ⊆ Ntor(F ) = 0,

we get f(S(P )) = f(P ). Thus P
N≃ f(P ) and f(P ) is a projective R-module. 2

Note that Lemma 3.2 can be used to provide another demonstration of [20,
Corollary 3.8] as shown below.

Remark 3.6. If P is nonnil-isomorphic to a projective module, then P is nonnil-
projective.

Proof. Let K be a projective module such that P
N≃ K. Since K is projective, it is

a direct summand of a free module F , and so F = K⊕L for some L. Since P
N≃ K,

it follows from Lemma 3.2 that P ⊕L
N≃ K ⊕L = F . Hence P is a direct summand

of an N-free module. Then P is a nonnil-projective module by [20, Theorem 3.7].
2

Lemma 3.7. Let R be a ring. If A1
N≃ B1 and A2

N≃ B2, then A1⊗A2
N≃ B1⊗B2.

Proof. Let f1 : A1 → B1 and f2 : A2 → B2 be two nonnil-isomorphisms. Then there
exist two homomorphisms g1 : B1 → A1 and g2 : B2 → A2 such that NIm(1B1

−
f1 ◦g1) = Ntor(B1), NIm(1A1

−g1 ◦f1) = Ntor(A1), NIm(1B2
−f2 ◦g2) = Ntor(B2),

and NIm(1A2 − g2 ◦ f2) = Ntor(A2). Set A := A1⊗A2, B := B1⊗B2, f := f1⊗ f2,
and g := g1 ⊗ g2. Then for every (a1 ⊗ a2) ∈ A1 ⊗ A2 (resp., (b1 ⊗ b2) ∈ B1 ⊗ B2)
we have f(a1 ⊗ a2) = f1(a1) ⊗ f2(a2) (resp., g(b1 ⊗ b2) = g1(b1) ⊗ g2(b2)). By
[13, Example 2.2.10] we get that f ◦ g = (f1 ◦ g1) ⊗ (f2 ◦ g2). Our aim now is
to show that NIm(1A − g ◦ f) = Ntor(A) and NIm(1B − f ◦ g) = Ntor(B). Since
Im(1A−g◦f)+Ntor(A) = NIm(1A−g◦f), to show that NIm(1A−g◦f) = Ntor(A), it
is enough to show that Im(1A−g◦f) ⊆ Ntor(A). Let a1⊗a2) ∈ A1⊗A2. Then there
exist s1, s2 ∈ R\Nil(R) such that s1(g1◦f1(a1)−a1) = 0 and s2(g2◦f2(a2)−a2) = 0.
Thus g ◦ f(a1 ⊗ a2) − a1 ⊗ a2 = g1 ◦ f1(a1) ⊗ g2 ◦ f2(a2) − a1 ⊗ a2, which implies
that s(g ◦ f(a1 ⊗ a2)− a1 ⊗ a2) = 0 with s = s1s2 ∈ R \ Nil(R). Similarly, we can
deduce that Im(1A−g◦f) ⊆ Ntor(A), since Ntor(A) is a submodule of A. Therefore
NIm(1A−g◦f) = Ntor(A). Likewise, we can deduce that NIm(1B−f◦g) = Ntor(B).

2

Corollary 3.8. Let R is a ZN-ring and let P1 and P2 be nonnil-projective R-
modules. Then P1 ⊗ P2 is nonnil-projective.
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Proof. Let P ′
1 and P ′

2 be projective modules such that P1
N≃ P ′

1 and P2
N≃ P ′

2. Then

by Lemma 3.7, P1⊗P2
N≃ P ′

1⊗P ′
2. Since P

′
1 and P ′

2 are projective modules, P ′
1⊗P ′

2

is projective by [13, Theorem 2.3.8]. Hence P1 ⊗ P2 is nonnil-projective. 2

Corollary 3.9. Let R be a local ring. Then every nonnil-projective module is
N -free.

Proof. Let P be a nonnil-projective R-module. Then there exists a projective R-

module P0 such that P
N≃ P0. Since R is a local ring, P is free by [13, Theorem

2.3.17]. Hence P is nonnil-isomorphic to a free R-module. Thus P is N -free. 2

Theorem 3.10. Let R be a ZN-ring and I be a nonnil-projective nonnil-ideal of
R. Then I is finitely generated.

Proof. Let I be a nonnil-projective nonnil-ideal of R. Then by [20, Theorem
3.9], there exist elements {xi | i ∈ Γ} ⊆ I and R-homomorphisms {fi | i ∈ Γ} ⊆
HomR(I,R) such that:

(1) If x ∈ I, then almost all fi(x) = 0,

(2) If x ∈ I, then there exists an element s ∈ R \ Nil(R) such that sx =
s
∑

i fi(x)xi.

Let a ∈ I be a non-nilpotent element. Then there exists a finite subset K of Γ
such that fi(a) = 0 for all i ∈ Γ \ K. Now let x ∈ I. Then there exists an ele-
ment s ∈ R \ Nil(R) such that sx = s

∑
i fi(x)xi. Hence asx = as

∑
i fi(x)xi =

s
∑

i xfi(a)xi = s
∑

k∈K xfk(a)xk = sa
∑

k∈K fk(x)xk. Since sa is regular, we con-
clude that x =

∑
k∈K fk(x)xk. Therefore, I =

∑
k∈K Rxk is finitely generated. 2

Let M be a nonnil-torsion-free R-module. Then M is nonnil-projective if and
only if M is projective by [20, Lemma 4.1]. In particular, if R is a ZN -ring and I is
an ideal of R, then I is nonnil-projective if and only if I is projective. Note that if
I is a nil ideal (i.e, I ⊆ Nil(R)), then I is not projective by [13, Proposition 6.7.12],
and so it is not nonnil-projective. It is well known that in an integral domain every
projective ideal is finitely generated according to [13, Corollary 5.2.7]. The follow-
ing corollary gives a generalization of this fact.

Corollary 3.11. Let R be a ZN-ring. Then every projective ideal of R is finitely
generated.

We know that every projective module is flat. So a natural question is whether
a nonnil-projective module is ϕ-flat. The following example shows that a nonnil-
projective module is not always ϕ-flat.

Example 3.12. Let R be a ring with w. gl.dim(R) ≥ 2 (for example R = k[X,Y ]
with k a field). Then there exists a non-zero ideal I of R such that R/I is not flat.
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Hence R/I is not a ϕ-flat module, but it is nonnil-projective since R/I
N≃ 0.

Remark 3.13. Note that a nonnil-projective module is not necessarily ϕ-flat.
However, if every R-module is nonnil-projective, then every R-module is ϕ-flat by
[20, Theorem 4.5].
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Algebra, 48(7)(2020), 3079–3090.

[20] W. Zhao, M. Wang and Y. Pu, On nonnil-commutative diagrams and nonnil-projective
modules, Comm. Algebra, 50(7)(2022), 2854–2867.

[21] W. Zhao and X. L. Zhang, On nonnil-injective modules, J. Sichuan Normal Univ.,
42(6)(2019), 808–815.


