KYUNGPOOK Math. J. 64(2024), 1-14 https://doi.org/10.5666/KMJ.2024.64.1.1 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

A Characterization of Nonnil-Projective Modules

HWANKOO KIM*

Division of Computer Engineering, Hoseo University, Asan 31499, Republic of Korea

 $e ext{-}mail: hkkim@hoseo.edu$

Najib Mahdou and El Houssaine Oubouhou

Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S. M. Ben Abdellah Fez, Morocco

 $e ext{-}mail: \mathtt{najib.mahdou@usmba.ac.ma}$ and $\mathtt{hossineoubouhou@gmail.com}$

ABSTRACT. Recently, Zhao, Wang, and Pu introduced and studied new concepts of nonnil-commutative diagrams and nonnil-projective modules. They proved that an R-module that is nonnil-isomorphic to a projective module is nonnil-projective, and they proposed the following problem: Is every nonnil-projective module nonnil-isomorphic to some projective module? In this paper, we delve into some new properties of nonnil-commutative diagrams and answer this problem in the affirmative.

1. Introduction

In this paper, all rings are assumed to be commutative with non-zero identity and all modules are assumed to be unitary. For a ring R, we denote by $\mathrm{Nil}(R)$ and Z(R) the ideal of all nilpotent elements of R and the set of all zero-divisors of R, respectively. A ring R is called a PN-ring if $\mathrm{Nil}(R)$ is a prime ideal of R and a ZN-ring if $Z(R) = \mathrm{Nil}(R)$. An ideal I of R is said to be nonnil if $I \nsubseteq \mathrm{Nil}(R)$.

Recall from [4] that a prime ideal P of R is said to be divided if it is comparable to every ideal of R. Let $\mathcal{H}:=\{R\mid R\text{ be a commutative ring, and Nil}(R)\text{ be a divided prime ideal of }R\}$. If $R\in\mathcal{H}$, then R is called a ϕ -ring. A ϕ -ring is called a strongly ϕ -ring if it is also a ZN-ring. Recall from [1] that for a ϕ -ring R with total quotient ring T(R), the map $\phi:T(R)\to R_{\mathrm{Nil}(R)}$ such that $\phi\left(\frac{b}{a}\right)=\frac{b}{a}$ is a ring

Received September 13, 2023; revised October 20, 2023; accepted October 23, 2023. 2020 Mathematics Subject Classification: 13C10, 13C12, 13D30.

Key words and phrases: Nonnil-commutative diagram, Nonnil-exact sequence, Nonnil-projective module.

The first author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2021R1I1A3047469).

^{*} Corresponding Author.

homomorphism, and the image of R, denoted by $\phi(R)$, is a strongly ϕ -ring. The classes of ϕ -rings and strongly ϕ -rings are good extensions of integral domains to commutative rings with zero-divisors. In 2002, Badawi [6] generalized the concept of Noetherian rings to that of nonnil-Noetherian rings in which all nonnil ideals are finitely generated. He showed that a ϕ -ring R is nonnil-Noetherian if and only if $\phi(R)$ is nonnil-Noetherian, if and only if R/Nil(R) is a Noetherian domain. Generalizations of Dedekind domains, Prüfer domains, Bézout domains, pseudo-valuation domains, Krull domains, valuation domains, Mori domains, piecewise Noetherian domains, and coherent domains to the context of rings that are in the class $\mathcal H$ are also introduced and studied. We recommend [2, 3, 5, 7, 8, 9, 10, 11] for studying the ring-theoretic characterizations on ϕ -rings.

To investigate module-theoretic characterizations on ϕ -rings, the authors [12, 14, 17, 18, 19, 21] introduce nonnil-injective modules, ϕ -projective, and ϕ -flat modules, and characterize nonnil-Noetherian rings, ϕ -von Neumann regular rings, nonnil-coherent rings, ϕ -coherent rings, ϕ -Dedekind rings, and ϕ -Prüfer rings. Let M be an R-module and set

$$Ntor(M) := \{x \in M \mid sx = 0 \text{ for some } s \in R \setminus Nil(R)\}.$$

If $\operatorname{Ntor}(M)=M$, then M is called a ϕ -torsion module, and if $\operatorname{Ntor}(M)=0$, then M is called a ϕ -torsion-free module. Recall from [18] that an R-module F is said to be ϕ -flat if for every R-monomorphism $f:A\longrightarrow B$ with $\operatorname{Coker}(f)$ being a ϕ -torsion R-module, we have $1_F\otimes_R f:F\otimes_R A\longrightarrow F\otimes_R B$ is an R-monomorphism; equivalently, $\operatorname{Tor}_1^R(F,M)=0$ for every ϕ -torsion R-module M (see for instance [15, 16, 18]). If R is a PN-ring, define $\phi:R\to R_{\operatorname{Nil}(R)}$ by $\phi(r)=\frac{r}{1}$ for every $r\in R$. Then $\phi(R)$ is a ZN-ring. In [17], Zhao defined the map $\psi:M\to M_{\operatorname{Nil}(R)}$ by $\psi(x)=\frac{x}{1}$ for every $x\in M$. This makes $\psi(M)$ a $\phi(R)$ -module. If $f:M\to N$ is a homomorphism of R-modules, then f induces naturally a $\phi(R)$ -homomorphism $\widetilde{f}:\psi(M)\to\psi(N)$ such that $\widetilde{f}\left(\frac{x}{1}\right)=\frac{f(x)}{1}$ for $x\in M$. A sequence of R-modules and homomorphisms $A\xrightarrow{f}B\xrightarrow{g}C$ is called ϕ -exact if the $\phi(R)$ -sequence: $\psi(A)\xrightarrow{\widetilde{f}}\psi(B)\xrightarrow{\widetilde{g}}\psi(C)$ is exact, and an R-module P is said to be ϕ -projective (resp., ϕ -free) if $\psi(P)$ is projective (resp., free) as a $\phi(R)$ -module. Let R be a PN-ring and let $f:A\to B$ be a homomorphism of R-modules. Set

$$NKer(f) := \{a \in A \mid sf(a) = 0 \text{ for some } s \in R \setminus Nil(R)\}$$
 and

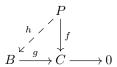
$$NIm(f) := \{b \in B \mid sb = sf(a) \text{ for some } a \in A \text{ and } s \in R \setminus Nil(R)\}.$$

Because Nil(R) is prime, NKer(f) is a submodule of A, called the nonnil-kernel of f, and NIm(f) is a submodule of B, called the nonnil-image of f. We set NCoker(f) := B/NIm(f). It is easy to verify that $\text{Ker}(f) + \text{Ntor}(A) \subseteq \text{NKer}(f)$ and Im(f) + Ntor(B) = NIm(f). Let A, B, C, D be R-modules and $f: A \to B, g: B \to D, h: A \to C, k: C \to D$ be homomorphisms of R-modules. Then the

following diagram:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow h & & g \downarrow \\
C & \xrightarrow{k} & D
\end{array}$$

is said to be nonnil-commutative if NIm(gf - kh) = Ntor(D); equivalently, NKer(gf - kh) = Ntor(A). A sequence of R-modules and homomorphisms $A \stackrel{f}{\rightarrow}$ $B \stackrel{g}{\to} C$ is called a nonnil-complex (resp., a nonnil-exact sequence) if it is ϕ -complex (resp., ϕ -exact); equivalently, $\operatorname{NIm}(f) \subseteq \operatorname{NKer}(g)$ (resp., $\operatorname{NIm}(f) = \operatorname{NKer}(g)$) according to [17, Theorem 2.6]. A homomorphism $f: A \to B$ of R-modules is called a nonnil-monomorphism if NKer(f) = Ntor(A), equivalently $0 \to A \xrightarrow{f} B$ is a nonnil-exact sequence; f is called a nonnil-epimorphism if NIm(f) = B (i.e., $\operatorname{NCoker}(f) = 0$, equivalently $A \xrightarrow{f} B \to 0$ is a nonnil-exact sequence. Also f is called a nonnil-isomorphism if there exists a homomorphism $g: B \to A$ such that $\operatorname{NIm}(\mathbf{1}_A - gf) = \operatorname{Ntor}(A)$ and $\operatorname{NIm}(\mathbf{1}_B - fg) = \operatorname{Ntor}(B)$. If there exists a nonnilisomorphism $f: A \to B$, we say that A and B are nonnil-isomorphic, denoted by $A \stackrel{N}{\simeq} B$. Note that if $f: A \to B$ is a nonnil-isomorphism, then f is both a nonnil-monomorphism and a nonnil-epimorphism. Interestingly, a homomorphism f of R-modules is both a nonnil-monomorphism and a nonnil-epimorphism without being a nonnil-isomorphism (see [20]). Following [20], an R-module P is said to be nonnil-projective if given any diagram of module homomorphisms



with the bottom row nonnil-exact, there is a homomorphism $h: P \to B$ making this diagram nonnil-commutative. Also an R-module F_0 is said to be N-free if it is nonnil-isomorphic to a free module. Following [20, Theorem 3.7], an R-module is nonnil-projective if and only if it is a direct summand of an N-free module. If an R-module P is nonnil-isomorphic to a projective module, then P is nonnil-projective (cf. [20, Corollary 3.8]). Afterward, they proposed an interesting problem as follows.

Problem: Is every nonnil-projective module nonnil-isomorphic to some projective module?

One of the main aims of this paper is to answer this problem. Section 2 studies some new properties of nonnil-commutative diagrams and nonnil-exact sequences. In the last section, we solved the previous problem in the affirmative: An R-module is nonnil-projective if and only if it is nonnil-isomorphic to a projective module (Theorem 3.1 and Remark 3.6). In this paper, R always denotes a PN-ring.

2. On Nonnil-Commutative Diagrams

We start this section by providing a nonnil-analog of Five Lemma.

Theorem 2.1. Consider the following nonnil-commutative diagram with exact rows:

$$D \xrightarrow{h} A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{k} E$$

$$\delta \downarrow \qquad \alpha \downarrow \qquad \beta \downarrow \qquad \gamma \downarrow \qquad \mu \downarrow$$

$$D' \xrightarrow{h'} A' \xrightarrow{f'} B' \xrightarrow{g'} C' \xrightarrow{k'} E'$$

- (1) If α and γ are nonnil-monomorphisms and δ is a nonnil-epimorphism, then β is a nonnil-monomorphism.
- (2) If α and γ are nonnil-epimorphisms and μ is a nonnil-monomorphism, then β is a nonnil-epimorphism.

Proof. (1) Let $b \in NKer(\beta)$. Then there exists $t_1 \in R \setminus Nil(R)$ such that $t_1\beta(b) = 0$. On the other hand, there exists $t_2 \in R \setminus Nil(R)$ such that $t_2\gamma \circ g(b) = t_2g' \circ \beta(b)$. Hence $t_1t_2\gamma \circ g(b) = t_2g'(t_1\beta(b)) = 0$. Therefore, $g(b) \in NKer(\gamma)$. Since γ is a nonnil-monomorphism, there exists $t_3 \in R \setminus Nil(R)$ such that $t_3g(b) = 0$, and so $b \in NKer(g) = NIm(f)$. Then $t_4b = t_4f(a)$ for some $a \in A$ and $t_4 \in R \setminus Nil(R)$. Hence $t_4(\beta \circ f(a) - f' \circ \alpha(a)) = t_4(\beta(b) - f'(\alpha(a)))$. Since $a \in A$, it follows that $t_5(f' \circ \alpha(a) - \beta \circ f(a)) = 0$ for some $t_5 \in R \setminus Nil(R)$. Therefore

$$0 = t_1 t_4 t_5 (f' \circ \alpha(a) - \beta \circ f(a))$$

$$= -t_1 t_5 t_4 (\beta(b) + f' \circ \alpha(a))$$

$$= -t_5 t_4 \beta(t_1 b) + t_1 t_4 t_5 f' \circ \alpha(a)$$

$$= t_1 t_4 t_5 f' \circ \alpha(a).$$

Hence $\alpha(a) \in \text{NKer}(f') = \text{NIm}(h)$, and so $t_6\alpha(a) = t_6h'(x')$ for some $t_6 \in R \setminus \text{Nil}(R)$ and $x' \in D'$. Since δ is a nonnil-epimorphism, there exist some $x \in D$ and $t_7 \in R \setminus \text{Nil}(R)$ such that $t_7\delta(x) = t_7x'$. Hence

$$\begin{array}{lcl} t_{6}t_{7}\alpha(a) & = & t_{7}t_{6}h'(x') \\ & = & t_{6}h'(t_{7}x') \\ & = & t_{6}h'(t_{7}\delta(x)) \\ & = & t_{6}t_{7}h'\circ\delta(x). \end{array}$$

On the other hand, since $x \in D$, it follows that $t_8h'\delta(x) = t_8\alpha h(x)$ for some $t_8 \in R \setminus Nil(R)$. So $t_6t_7t_8\alpha(a) = t_6t_7t_8h'\circ\delta(x) = t_6t_7t_8\alpha\circ h(x)$, and hence $t_6t_7t_8\alpha(a-h(x)) = 0$. Therefore, $a - h(x) \in NKer(\alpha) = Ntor(A)$, and hence there exists $t_9 \in R \setminus Nil(R)$ such that $t_9a = t_9h(x)$. Since $h(x) \in Im(h) \subseteq NIm(h) = NKer(f)$,

we get $t_{10}f \circ h(x) = 0$ for some $t_{10} \in R \setminus Nil(R)$. Then

$$t_4t_9t_{10}b = t_9t_{10}t_4f(a)$$

$$= t_{10}t_4f(t_9h(a))$$

$$= t_4t_9t_{10}f \circ h(a) = 0.$$

Therefore, tb = 0 with $t := t_4t_9t_{10} \in R \setminus Nil(R)$, and so $b \in Ntor(B)$. Thus β is a nonnil-monomorphism.

(2) Let $b' \in B'$. Since γ is a nonnil-epimorphism, there exist $c \in C$ and $t_1 \in R \setminus Nil(R)$ such that $t_1\gamma(c) = t_1g'(b')$. Nonnil-commutativity of the right square gives $t_2\mu \circ k(c) = t_2jk' \circ \gamma(c)$ for some $t_2 \in R \setminus Nil(R)$. Then

$$t_1 t_2 \mu \circ k(c) = t_2 k'(t_1 \gamma(c))$$

= $t_2 k'(t_1 g'(b'))$
= $t_1 t_2 k' \circ g'(b')$.

Since $g'(b') \in Im(g') \subseteq \text{NIm}(g') = \text{NKer}(k')$, there exists $t_3 \in R \setminus \text{Nil}(R)$ such that $t_3k' \circ g'(b') = 0$, and so $t_1t_2t_3\mu \circ k(c) = 0$. Therefore, $k(c) \in \text{NKer}(\gamma) = \text{Ntor}(E)$. Consequently there exists $t_4 \in R \setminus \text{Nil}(R)$ such that $t_4k(c) = 0$, and hence $c \in \text{NKer}(k) = \text{NIm}(g)$, that is, $t_5c = t_5g(b)$ for some $t_5 \in R \setminus \text{Nil}(R)$ and $b \in B$. On the other hand, since $b \in B$, there exists $t_6 \in R \setminus \text{Nil}(R)$ such that $t_6\gamma \circ g(b) = t_6g' \circ \beta(b)$. Then

$$t_1t_5t_6g'(b') = t_1t_5t_6\gamma(c)$$

$$= t_1t_6\gamma(t_5g(b))$$

$$= t_1t_5t_6g' \circ \beta(b).$$

Thus $t_1t_5t_6g'(b'-\beta(b))=0$, and so $b'-\beta(b)\in \mathrm{NKer}\,g'=\mathrm{NIm}(f')$. Hence there exist $t_7\in R\setminus \mathrm{Nil}(R)$ and $a'\in A'$ such that $t_7(b'-\beta(b))=t_7f'(a')$. Since α is a nonnil-epimorphism, there exist some $a\in A$ and $t_8\in R\setminus \mathrm{Nil}(R)$ such that $t_8\alpha(a)=t_8a'$. Hence

$$t_8t_7(b'-\beta(b)) = t_8t_7f'(a') = t_7t_8f' \circ \alpha(a).$$

Since $a \in A$, there exists $t_9 \in R \setminus \text{Nil}(R)$ such that $t_9 f' \circ \alpha(a) = t_9 \beta \circ f(a)$, and so $t_9 t_8 t_7 (b' - \beta(b)) = t_7 t_8 t_9 \beta \circ f(a)$. Thus $tb' = t \beta(b + f(a))$ with $t := t_7 t_8 t_9 \in R \setminus \text{Nil}(R)$. Consequently β is a nonnil-epimorphism.

Let M be an R-module. Define $\psi: M \to M_{\mathrm{Nil}(R)}$ such that $\psi(x) = \frac{x}{1}$ for every $x \in M$.

Proposition 2.2. Let $f: A \to B$ be an R-module homomorphism. Then $A/\operatorname{NKer}(f) \cong \psi(\operatorname{Im}(f))$.

Proof. Let $x, y \in A$. Then we have:

$$\frac{f(x)}{1} = \frac{f(y)}{1} \in \psi(\operatorname{Im}(f)) \iff \exists s \in (R \setminus \operatorname{Nil}(R)) : sf(x) = sf(y)$$

$$\iff \exists s \in (R \setminus \operatorname{Nil}(R)) : sf(x - y) = 0$$

$$\iff x - y \in \operatorname{NKer}(f)$$

$$\iff \bar{x} = \bar{y} \in A / \operatorname{NKer}(f).$$

Hence the homomorphism:

$$g: A/\operatorname{NKer}(f) \to \psi(\operatorname{Im}(f))$$

 $\bar{x} \mapsto g(\bar{x}) = \frac{f(x)}{1}$

is an isomorphism.

A nonempty subset S of R is said to be a multiplicative subset if $1 \in S$, $0 \notin S$, and for each $a, b \in S$, we have $ab \in S$. Note that if there exists $s \in S \cap \text{Nil}(R)$, then there exists a positive integer n such that $0 = s^n \in S$, a contradiction. Hence we always assume that $S \cap \text{Nil}(R) = \emptyset$.

It is well known that if $M' \xrightarrow{f} M \xrightarrow{g} M''$ is an exact sequence of R-modules, then $M'_S \xrightarrow{f_S} M_S \xrightarrow{g_S} M''_S$ is also exact. The following theorem gives the nonnil-version of this result.

Theorem 2.3. Let R be a ring, S be a multiplicative subset of R, and $M' \xrightarrow{f} M \xrightarrow{g} M''$ be a nonnil-exact sequence of R-modules. Then $M'_S \xrightarrow{f_S} M_S \xrightarrow{g_S} M''_S$ is a nonnil-exact sequence.

Proof. Let $\frac{y}{s} \in \text{NIm}(f_S)$. Then there exist $\frac{t}{s_1} \in R_S \setminus \text{Nil}(R_S)$ and $\frac{x'}{s'} \in M_S$ such that $\frac{t}{s_1} \frac{y}{s} = \frac{t}{s_1} f_S(\frac{x'}{s'}) = \frac{tf(x')}{s_1 s'}$. Thus there exists $s_2 \in S$ such that $s_2 t s' s_1 y = s_2 s_1 s t f(x') = s_2 t f(s_1 s x')$. Hence $s_1 s y \in \text{NIm}(f) = \text{NKer}(g)$ since $s_2 t \in R \setminus \text{Nil}(R)$, and so $t'g(s_1 s y) = 0$ for some $t' \in R \setminus \text{Nil}(R)$. Therefore, $\frac{t'g(y)}{s} = 0$, whence $\frac{t'}{s} g_S(\frac{y}{s}) = 0$ and $\frac{t'}{s} \in R_S \setminus \text{Nil}(R_S)$. Thus $\frac{y}{s} \in \text{NKer}(g_S)$.

 $\frac{t'}{t}g_S(\frac{y}{s}) = 0 \text{ and } \frac{t'}{t} \in R_S \setminus \text{Nil}(R_S). \text{ Thus } \frac{y}{s} \in \text{NKer}(g_S).$ Conversely, let $\frac{x}{s} \in \text{NKer}(g_S)$. Then $\frac{t}{s_1}\frac{g(x)}{s} = 0$ for some $\frac{t}{s_1} \in R_S \setminus \text{Nil}(R_S)$. Thus there exists $s_2 \in S$ such that $ts_2f(x) = 0$, whence $s_2x \in \text{NKer}(f) = \text{NIm}(g)$ since $t \in R \setminus \text{Nil}(R)$, that is, $t_1s_2x = t_1f(x')$ for some $x' \in M'$ and $t_1 \in R \setminus \text{Nil}(R)$. Then

$$\frac{t_1 s_2}{1} \frac{x}{s} = \frac{t_1 f(x')}{s} = \frac{t_1 s_2 f(x')}{s_2 s} = \frac{t_1 s_2}{1} f_S(\frac{x'}{s_2 s}).$$

Thus $\frac{x}{s} \in \text{NIm}(f_S)$ since $\frac{t_1 s_2}{1} \in R_S \setminus \text{Nil}(R_S)$.

Remark 2.4. If $S := R \setminus \text{Nil}(R)$, then $M' \xrightarrow{f} M \xrightarrow{g} M''$ is a nonnil-exact sequence if and only if $M'_S \xrightarrow{f_S} M_S \xrightarrow{g_S} M''_S$ is exact.

Note that a nonnil-monomorphism is not always a monomorphism (see [17]). But if we consider K as a field and M as a K-vector space, and let $R = K \propto M$ be the trivial extension. Then the homomorphism $g: M \to R$ defined by g(x) = (0, x) is not a nonnil-epimorphism; in fact, $(1,0) \notin \text{NIm}(g)$. Now we give an example of a nonnil-epimorphism which is not an epimorphism.

Example 2.5. Let $R = \mathbb{Z} \propto \mathbb{Z}/2\mathbb{Z}$ and consider $g : \mathbb{Z} \to R$ defined by g(a) = (a,0). Since $2(0 \propto \mathbb{Z}/2\mathbb{Z}) = 0$, it follows that $(0 \propto \mathbb{Z}/2\mathbb{Z}) \subseteq \operatorname{Ntor}(R)$. Then $\operatorname{NIm}(g) = \operatorname{Im}(g) + \operatorname{Ntor}(R) = R$. Hence g is a nonnil-epimorphism, which is not an epimorphism.

Proposition 2.6. Let $f: M \to N$ be an R-module homomorphism and S be a multiplicative subset of R. Then the following statements are equivalent:

- (1) f is a nonnil-monomorphism,
- (2) f_S is a nonnil-monomorphism.
- *Proof.* (1) \Rightarrow (2) This is straightforward by Theorem 2.3.
- $(2)\Rightarrow (1) \text{ Assume that } f_S \text{ is a nonnil-monomorphism. Set } M':=\operatorname{NKer}(f).$ Then we have the following nonnil-exact sequence: $0\to M'\stackrel{i}{\to} M\stackrel{f}{\to} N$. Thus $0\to M_S'\stackrel{i_S}{\to} M_S\stackrel{f_S}{\to} N_S$ is also a nonnil-exact sequence. Hence $\operatorname{Ntor}(M_S)+\operatorname{Im}(i_S)=\operatorname{NIm}(i_S)=\operatorname{NKer}(f_S)=\operatorname{Ntor}(M_S),$ and so $M_S'\subseteq\operatorname{Ntor}(M_S).$ Now let $x\in M'.$ Then $\frac{x}{1}\in\operatorname{Ntor}(M_S),$ whence $\frac{t}{s_1}\frac{x}{1}=0$ for some $\frac{t}{s_1}\in R_S\setminus\operatorname{Nil}(R_S).$ Thus stx=0 for some $s\in S.$ Since $\operatorname{Nil}(R)$ is a prime ideal of $R, st\in R\setminus\operatorname{Nil}(R),$ and so $x\in\operatorname{Ntor}(M).$ Therefore, $\operatorname{NKer}(f)=\operatorname{Ntor}(M).$ Consequently f is a nonnil-monomorphism. \square

Proposition 2.7. Let $f: M \to N$ be an R-module homomorphism. Then the following statements are equivalent:

- (1) f is a nonnil-epimorphism,
- (2) $f_{\mathfrak{p}}$ is a nonnil-epimorphism for any prime ideal \mathfrak{p} of R,
- (3) $f_{\mathfrak{m}}$ is a nonnil-epimorphism for any maximal ideal \mathfrak{m} of R.

Proof. (1) \Rightarrow (2) Assume that f is a nonnil-epimorphism. Then $M \xrightarrow{f} N \to 0$ is nonnil-exact. Let \mathfrak{p} be a prime ideal of R. Then for $S := R \setminus \mathfrak{p}$, we have $M_{\mathfrak{p}} \xrightarrow{f_{\mathfrak{p}}} N_{\mathfrak{p}} \to 0$ is nonnil-exact according to Theorem 2.3. Thus $f_{\mathfrak{p}}$ is a nonnil-epimorphism for any prime ideal \mathfrak{p} of R.

- $(2) \Rightarrow (3)$ This is straightforward.
- (3) \Rightarrow (1) Let $y \in N$. Then $\frac{y}{1} \in N_{\mathfrak{m}} = \operatorname{NIm}(f_{\mathfrak{m}})$ for any maximal ideal \mathfrak{m} of R. Thus for every $\mathfrak{m} \in \operatorname{Max}(R)$, there exist $\frac{t_{\mathfrak{m}}}{\alpha_{\mathfrak{m}}} \in R_{\mathfrak{m}} \setminus \operatorname{Nil}(R_{\mathfrak{m}}), \ x \in M$, and $s_{\mathfrak{m}} \in R \setminus \mathfrak{m}$ such that $\frac{t_{\mathfrak{m}}}{\alpha_{\mathfrak{m}}} \frac{y}{1} = \frac{t_{\mathfrak{m}}}{\alpha_{\mathfrak{m}}} f_{\mathfrak{m}}(\frac{x}{s_{\mathfrak{m}}})$. So $s'_{\mathfrak{m}} \alpha_{\mathfrak{m}} t_{\mathfrak{m}} s_{\mathfrak{m}} y = s'_{\mathfrak{m}} \alpha_{\mathfrak{m}} t_{\mathfrak{m}} f(x)$ for some $s'_{\mathfrak{m}} \in R \setminus \mathfrak{m}$. Set $S := \{s_{\mathfrak{m}} \mid \mathfrak{m} \text{ is a maximal ideal of } R\}$. Since S generates R, there exist finite elements $s_{\mathfrak{m}_{1}}, \ldots, s_{\mathfrak{m}_{n}}$ of S and $\alpha_{1}, \ldots, \alpha_{n} \in R$ such that $1 = s_{\mathfrak{m}_{1}} = s_{\mathfrak{m}_{2}} = s_{\mathfrak{m}_{2$

 $\alpha_1 s_{\mathfrak{m}_1} + \cdots + \alpha_n s_{\mathfrak{m}_n}$. For all $i = 1, \ldots, n$, we have $s'_{\mathfrak{m}_i} \alpha_{\mathfrak{m}_i} t_{\mathfrak{m}_i} s_{\mathfrak{m}_i} y = s'_{\mathfrak{m}_i} \alpha_{\mathfrak{m}_i} t_{\mathfrak{m}_i} f(x)$, and so $s \alpha_{\mathfrak{m}_i} t_{\mathfrak{m}_i} s_{\mathfrak{m}_i} y = s \alpha_{\mathfrak{m}_i} t_{\mathfrak{m}_i} f(x)$ with $s := s'_{\mathfrak{m}_1} s'_{\mathfrak{m}_2} \cdots s'_{\mathfrak{m}_n}$. Then

$$s\alpha_{\mathfrak{m}_{i}}t_{\mathfrak{m}_{i}}y = s\alpha_{\mathfrak{m}_{i}}t_{\mathfrak{m}_{i}}(\alpha_{1}s_{\mathfrak{m}_{1}} + \dots + \alpha_{n}s_{\mathfrak{m}_{n}})y$$

$$= s\alpha_{\mathfrak{m}_{i}}t_{\mathfrak{m}_{i}}\alpha_{1}s_{\mathfrak{m}_{1}}y + \dots + s\alpha_{\mathfrak{m}_{i}}t_{\mathfrak{m}_{i}}\alpha_{n}s_{\mathfrak{m}_{n}}y$$

$$= s\alpha_{\mathfrak{m}_{i}}t_{\mathfrak{m}_{i}}\alpha_{1}f(x) + \dots + st\alpha_{n}f(x)$$

$$= s\alpha_{\mathfrak{m}_{i}}t_{\mathfrak{m}_{i}}f(\alpha_{1}x + \dots + st\alpha_{n}x).$$

Since Nil(R) is a prime ideal of R, it follows that $s\alpha_{\mathfrak{m}_i}t_{\mathfrak{m}_i} \in R \setminus \text{Nil}(R)$. Therefore, $y \in \text{NIm}(f)$.

Recall that a ring R is called a ϕ -von Neumann regular ring if $R/\operatorname{Nil}(R)$ is a field [18, Theorem 4.1]. Note that if R is a ϕ -von Neumann regular ring, then every non-nilpotent element of R is a unit. We end this section with the following theorem, which characterizes when each nonnil-commutative diagram (resp., nonnil-exact sequence, nonnil-monomorphism, nonnil-epimorphism, nonnil-isomorphism) is commutative (resp., exact, monomorphism, epimorphism, isomorphism).

Theorem 2.8. Let R be a ring. Then the following conditions are equivalent:

- (1) Every nonnil-commutative diagram is commutative,
- (2) Every nonnil-exact sequence is exact,
- (3) Every nonnil-monomorphism is a monomorphism,
- (4) Every nonnil-epimorphism is an epimorphism,
- (5) Every nonnil-isomorphism is an isomorphism,
- (6) R is a ϕ -von Neumann regular ring.

Proof. $(1) \Rightarrow (5)$, $(2) \Rightarrow (3)\&(5)$, and $(6) \Rightarrow (2)\&(3)$ are straightforward.

- (3) \Rightarrow (6) Let $a \in R \setminus \text{Nil}(R)$ and consider the following homomorphism $f: R/Ra \to 0$. Since Ntor(R/Ra) = R/Ra, it follows that $R/Ra = \text{Ntor}(R/Ra) \subseteq \text{NKer}(f) \subseteq R/Ra$, and so NKer(f) = Ntor(R/Ra). Hence f is a nonnilmonomorphism, and so it is a monomorphism by (3). Then R/Ra = Ker(f) = 0, and hence a is a unit. Consequently (R, Nil(R)) is a local ring. Hence Nil(R) is a divided prime ideal of R. Thus R is a ϕ -ring with R/Nil(R) being a field. Therefore, R is a ϕ -von Neumann regular ring by [18, Theorem 4.1].
- $(4) \Rightarrow (6)$ Let $a \in R \setminus Nil(R)$ and consider the following homomorphism $f: 0 \to R/Ra$. Since Ntor(R/Ra) = R/Ra, it follows that NIm(f) = Im(f) + Ntor(R/I) = 0 + R/Ra = R/Ra. Hence f is a nonnil-epimorphism, and so it is an epimorphism. Consequently 0 = Im(f) = R/Ra, and so a is a unit. Hence as in the above, R is a ϕ -von Neumann regular ring.
- $(5)\Rightarrow (6)$ Let $a\in R\setminus \mathrm{Nil}(R)$. Since a(R/Ra)=0, it is easy to verify that $R/Ra\stackrel{N}{\simeq}0$ (see Lemma 3.3), and so R/Ra=0 by (5). Therefore, a is a unit, and so as in the above, R is a ϕ -von Neumann regular ring.

3. Characterizing Nonnil-Projective Modules Using Projective Modules

The nonnil-projective module was studied in [20] using an N-free module, a right nonnil-split sequence, and a nonnil-projective basis. In particular, if an R-module P is nonnil-isomorphic to a projective module P_0 , then P is nonnil-projective, and they conclude their paper by proposing the following problem.

Problem: Is every nonnil-projective module nonnil-isomorphic to some projective module?

The following theorem solves this difficulty by stating that an R-module is nonnil-projective if and only if it is nonnil-isomorphic to a projective module.

Theorem 3.1. Let R be a ZN-ring. Then every nonnil-projective module is nonnil-isomorphic to some projective module.

We need simple but necessary lemmas to prove Theorem 3.1.

Lemma 3.2. If
$$A_1 \stackrel{N}{\simeq} B_1$$
 and $A_2 \stackrel{N}{\simeq} B_2$, then $A_1 \oplus A_2 \stackrel{N}{\simeq} B_1 \oplus B_2$.

Proof. Let $f_1:A_1\to B_1$ and $f_2:A_2\to B_2$ be two nonnil-isomorphisms. Then there exist two homomorphisms $g_1:B_1\to A_1$ and $g_2:B_2\to A_2$ such that $\mathrm{NIm}(1_{A_1}-f_1\circ g_1)=\mathrm{Ntor}(A_1),\,\mathrm{NIm}(1_{B_1}-g_1\circ f_1)=\mathrm{Ntor}(B_1),\,\mathrm{NIm}(1_{A_2}-f_2\circ g_2)=\mathrm{Ntor}(A_1),$ and $\mathrm{NIm}(1_{B_2}-g_2\circ f_2)=\mathrm{Ntor}(B_2).$ Define

$$f: A_1 \oplus A_2 \to B_1 \oplus B_2$$
 by $(x_1, x_2) \mapsto f(x_1, x_2) = (f_1(x_1), f_2(x_2))$

and

$$g: B_1 \oplus B_2 \to A_1 \oplus A_2$$
 by $(x_1, x_2) \mapsto g(x_1, x_2) = (g_1(x_1), g_2(x_2)).$

Then it is easy to verify that:

$$\begin{aligned} \operatorname{NIm}(1_{A_1 \oplus A_2} - f \circ g) &= \operatorname{NIm}(1_{A_1} - f_1 \circ g_1) \oplus \operatorname{NIm}(1_{A_2} - f_2 \circ g_2) \\ &= \operatorname{Ntor}(A_1) \oplus \operatorname{Ntor}(A_2) \\ &= \operatorname{Ntor}(A_1 \oplus A_2) \end{aligned}$$

and

$$\operatorname{NIm}(1_{B_1 \oplus B_2} - g \circ f) = \operatorname{NIm}(1_{B_1} - g_1 \circ f_1) \oplus \operatorname{NIm}(1_{B_2} - g_2 \circ f_2)
= \operatorname{Ntor}(B_1) \oplus \operatorname{Ntor}(B_2)
= \operatorname{Ntor}(B_1 \oplus B_2).$$

Hence
$$A_1 \oplus A_2 \stackrel{N}{\simeq} B_1 \oplus B_2$$
.

Lemma 3.3. Let M be an R-module. Then $M \stackrel{N}{\simeq} 0$ if and only if M is a ϕ -torsion R-module.

Proof. Let $f: M \to 0$ be a nonnil-isomorphism. Then $\operatorname{NIm}(1_M - f \circ 0) = \operatorname{Ntor}(M)$. Since $\operatorname{NIm}(1_M - f \circ 0) = \operatorname{NIm}(1_M) = M$, we get $M = \operatorname{Ntor}(M)$.

Conversely, assume that M = Ntor(M). Then $f: M \to 0$ is a nonnilisomorphism since $\text{NIm}(1_M) = M = \text{Ntor}(M)$.

For any submodule N of an R-module M and any multiplicative subset S of R, we define

$$S^M(N) := \{ x \in M \mid sx \in N \text{ for some } s \in S \},$$

called the S-component of N in M. If no confusion can arise, we will also write S(N) instead of $S^M(N)$. From this point on, set $S := R \setminus Nil(R)$.

Lemma 3.4. Let $f: A \to B$ be a nonnil-isomorphism and N be a submodule of A. Then $S(N) \stackrel{N}{\simeq} f(S(N))$.

Proof. Let $g: B \to A$ such that $\operatorname{NIm}(1_A - g \circ f) = \operatorname{Ntor}(A)$ and $\operatorname{NIm}(1_B - f \circ g) = \operatorname{Ntor}(B)$. Define $f_{S(N)}: S(N) \to f(S(N))$ as the restriction of f on S(N). Let $y = f(n') \in f(S(N))$ with $n' \in N$. Then there exists $t_1 \in R \setminus \operatorname{Nil}(R)$ such that $t_1n' \in N$. On the other hand, since $\operatorname{NIm}(1_A - g \circ f) = \operatorname{Ntor}(A)$, we get $n' - (g \circ f)(n') \in \operatorname{Ntor}(A)$. Then $t_2n' = t_2(f \circ g)(n')$ for some $t_2 \in R \setminus \operatorname{Nil}(R)$, and hence $t_2t_1g(y) = t_2t_1n' \in N$. Therefore, $f(y) \in S(N)$ and it is easy to verify that $\operatorname{NIm}(1_{S(N)} - g_{f(S(N))} \circ f_{S(N)}) = \operatorname{Ntor}(S(N))$ and $\operatorname{NIm}(1_{f(S(N))} - f_{S(N)} \circ g_{f(S(N))}) = \operatorname{Ntor}(f(S(N)))$.

Lemma 3.5. If N is a direct summand of A, then $S(N) \stackrel{N}{\simeq} N$.

Proof. Let $A = N \oplus L$ for some submodule L of A. Let $x = n + l \in S(N)$ with $n \in N$ and $l \in L$. Then $tx = tn + tl \in N$ for some $t \in R \setminus Nil(R)$. Then $tl = tx - tn \in N \cap L = 0$, and so tl = 0, that is, $t \in Ntor(L)$. Therefore, $S(N) \subseteq N \oplus Ntor(L)$.

Conversely, let $x = n + l \in N \oplus \text{Ntor}(L)$. Then tl = 0 for some $t \in R \setminus \text{Nil}(R)$. Hence $tx = tn \in N$, and so $x \in S(N)$. Consequently $S(N) = N \oplus \text{Ntor}(L)$. Since $\text{Ntor}(L) \overset{N}{\simeq} 0$ by Lemma 3.3, $S(N) \overset{N}{\simeq} N$ according to Lemma 3.2.

Proof of Theorem 3.1. Let P be a nonnil-projective module. Then by [20, Theorem 3.7], P is a direct summand of an N-free module. Hence there is a free R-module F such that $A = P \oplus L$ is nonnil-isomorphic to F. Let $f: A \to F$ be a nonnil-isomorphism. Our aim now is to show that $F = f(P) \oplus f(L)$. For this, let $g: F \to A$ such that $\operatorname{NIm}(1_A - g \circ f) = \operatorname{Ntor}(A)$ and $\operatorname{NIm}(1_F - f \circ g) = \operatorname{Ntor}(F)$. Since F is a free R-module and $Z(R) = \operatorname{Nil}(R)$, it follows from [13, Example 1.6.12 (1)] that

Ntor(F) = tor(F) = 0, and hence $\text{Im}(1_F - f \circ g) \subseteq \text{NIm}(1_F - f \circ g) = \text{Ntor}(F) = 0$. Therefore, f is an epimorphism, that is, F = f(A). Consequently F = f(P) + f(L). Let $y \in f(P) \cap f(L)$. Then there exist $x \in P$ and $l \in L$ such that y = f(x) = f(l). Thus f(x - l) = 0, and so $x - l \in \text{Ker}(f) \subseteq \text{NKer}(f) = \text{Ntor}(A)$. Then there exists a non-nilpotent element $t \in R$ such that tx = tl. Since $tx = tl \in P \cap L = 0$, it follows that tx = 0, whence ty = f(tx) = 0. Then y = 0 since F is a free R-module. Thus $F = f(P) \oplus f(L)$. Therefore, f(P) is a projective R-module. By Lemma 3.5, $P \stackrel{N}{\cong} S(P)$, and then $P \stackrel{N}{\cong} f(S(P))$ according to Lemma 3.4. Note that $f(S(P)) = f(P \oplus \text{Ntor}(L)) = f(P) + f(\text{Ntor}(L))$. Since $f(\text{Ntor}(L)) \subseteq \text{Ntor}(F) = 0$, we get f(S(P)) = f(P). Thus $P \stackrel{N}{\cong} f(P)$ and f(P) is a projective R-module. \square

Note that Lemma 3.2 can be used to provide another demonstration of [20, Corollary 3.8] as shown below.

Remark 3.6. If P is nonnil-isomorphic to a projective module, then P is nonnil-projective.

Proof. Let K be a projective module such that $P \stackrel{N}{\cong} K$. Since K is projective, it is a direct summand of a free module F, and so $F = K \oplus L$ for some L. Since $P \stackrel{N}{\cong} K$, it follows from Lemma 3.2 that $P \oplus L \stackrel{N}{\cong} K \oplus L = F$. Hence P is a direct summand of an N-free module. Then P is a nonnil-projective module by [20, Theorem 3.7].

Lemma 3.7. Let R be a ring. If $A_1 \stackrel{N}{\simeq} B_1$ and $A_2 \stackrel{N}{\simeq} B_2$, then $A_1 \otimes A_2 \stackrel{N}{\simeq} B_1 \otimes B_2$.

Proof. Let $f_1: A_1 \to B_1$ and $f_2: A_2 \to B_2$ be two nonnil-isomorphisms. Then there exist two homomorphisms $g_1: B_1 \to A_1$ and $g_2: B_2 \to A_2$ such that $NIm(1_{B_1}$ $f_1 \circ g_1) = \text{Ntor}(B_1), \text{NIm}(1_{A_1} - g_1 \circ f_1) = \text{Ntor}(A_1), \text{NIm}(1_{B_2} - f_2 \circ g_2) = \text{Ntor}(B_2),$ and $NIm(1_{A_2} - g_2 \circ f_2) = Ntor(A_2)$. Set $A := A_1 \otimes A_2$, $B := B_1 \otimes B_2$, $f := f_1 \otimes f_2$, and $g := g_1 \otimes g_2$. Then for every $(a_1 \otimes a_2) \in A_1 \otimes A_2$ (resp., $(b_1 \otimes b_2) \in B_1 \otimes B_2$) we have $f(a_1 \otimes a_2) = f_1(a_1) \otimes f_2(a_2)$ (resp., $g(b_1 \otimes b_2) = g_1(b_1) \otimes g_2(b_2)$). By [13, Example 2.2.10] we get that $f \circ g = (f_1 \circ g_1) \otimes (f_2 \circ g_2)$. Our aim now is to show that $NIm(1_A - g \circ f) = Ntor(A)$ and $NIm(1_B - f \circ g) = Ntor(B)$. Since $\operatorname{Im}(1_A - g \circ f) + \operatorname{Ntor}(A) = \operatorname{NIm}(1_A - g \circ f)$, to show that $\operatorname{NIm}(1_A - g \circ f) = \operatorname{Ntor}(A)$, it is enough to show that $\operatorname{Im}(1_A - g \circ f) \subseteq \operatorname{Ntor}(A)$. Let $a_1 \otimes a_2 \in A_1 \otimes A_2$. Then there exist $s_1, s_2 \in R \setminus Nil(R)$ such that $s_1(g_1 \circ f_1(a_1) - a_1) = 0$ and $s_2(g_2 \circ f_2(a_2) - a_2) = 0$. Thus $g \circ f(a_1 \otimes a_2) - a_1 \otimes a_2 = g_1 \circ f_1(a_1) \otimes g_2 \circ f_2(a_2) - a_1 \otimes a_2$, which implies that $s(g \circ f(a_1 \otimes a_2) - a_1 \otimes a_2) = 0$ with $s = s_1 s_2 \in R \setminus Nil(R)$. Similarly, we can deduce that $\operatorname{Im}(1_A - g \circ f) \subseteq \operatorname{Ntor}(A)$, since $\operatorname{Ntor}(A)$ is a submodule of A. Therefore $\operatorname{NIm}(1_A - g \circ f) = \operatorname{Ntor}(A)$. Likewise, we can deduce that $\operatorname{NIm}(1_B - f \circ g) = \operatorname{Ntor}(B)$. П

Corollary 3.8. Let R is a ZN-ring and let P_1 and P_2 be nonnil-projective R-modules. Then $P_1 \otimes P_2$ is nonnil-projective.

L

Proof. Let P_1' and P_2' be projective modules such that $P_1 \stackrel{N}{\simeq} P_1'$ and $P_2 \stackrel{N}{\simeq} P_2'$. Then by Lemma 3.7, $P_1 \otimes P_2 \stackrel{N}{\simeq} P_1' \otimes P_2'$. Since P_1' and P_2' are projective modules, $P_1' \otimes P_2'$ is projective by [13, Theorem 2.3.8]. Hence $P_1 \otimes P_2$ is nonnil-projective.

Corollary 3.9. Let R be a local ring. Then every nonnil-projective module is N-free.

Proof. Let P be a nonnil-projective R-module. Then there exists a projective R-module P_0 such that $P \stackrel{N}{\simeq} P_0$. Since R is a local ring, P is free by [13, Theorem 2.3.17]. Hence P is nonnil-isomorphic to a free R-module. Thus P is N-free. \square

Theorem 3.10. Let R be a ZN-ring and I be a nonnil-projective nonnil-ideal of R. Then I is finitely generated.

Proof. Let I be a nonnil-projective nonnil-ideal of R. Then by [20, Theorem 3.9], there exist elements $\{x_i \mid i \in \Gamma\} \subseteq I$ and R-homomorphisms $\{f_i \mid i \in \Gamma\} \subseteq \operatorname{Hom}_R(I,R)$ such that:

- (1) If $x \in I$, then almost all $f_i(x) = 0$,
- (2) If $x \in I$, then there exists an element $s \in R \setminus Nil(R)$ such that $sx = s \sum_i f_i(x)x_i$.

Let $a \in I$ be a non-nilpotent element. Then there exists a finite subset K of Γ such that $f_i(a) = 0$ for all $i \in \Gamma \setminus K$. Now let $x \in I$. Then there exists an element $s \in R \setminus \text{Nil}(R)$ such that $sx = s \sum_i f_i(x) x_i$. Hence $asx = as \sum_i f_i(x) x_i = s \sum_i x f_i(a) x_i = s \sum_{k \in K} x f_k(a) x_k = sa \sum_{k \in K} f_k(x) x_k$. Since sa is regular, we conclude that $x = \sum_{k \in K} f_k(x) x_k$. Therefore, $I = \sum_{k \in K} Rx_k$ is finitely generated. \square

Let M be a nonnil-torsion-free R-module. Then M is nonnil-projective if and only if M is projective by [20, Lemma 4.1]. In particular, if R is a ZN-ring and I is an ideal of R, then I is nonnil-projective if and only if I is projective. Note that if I is a nil ideal (i.e, $I \subseteq \operatorname{Nil}(R)$), then I is not projective by [13, Proposition 6.7.12], and so it is not nonnil-projective. It is well known that in an integral domain every projective ideal is finitely generated according to [13, Corollary 5.2.7]. The following corollary gives a generalization of this fact.

Corollary 3.11. Let R be a ZN-ring. Then every projective ideal of R is finitely generated.

We know that every projective module is flat. So a natural question is whether a nonnil-projective module is ϕ -flat. The following example shows that a nonnil-projective module is not always ϕ -flat.

Example 3.12. Let R be a ring with w.gl. $\dim(R) \geq 2$ (for example R = k[X, Y] with k a field). Then there exists a non-zero ideal I of R such that R/I is not flat.

Hence R/I is not a ϕ -flat module, but it is nonnil-projective since $R/I \overset{N}{\simeq} 0$.

Remark 3.13. Note that a nonnil-projective module is not necessarily ϕ -flat. However, if every R-module is nonnil-projective, then every R-module is ϕ -flat by [20, Theorem 4.5].

Acknowledgements. The authors would like to thank the reviewer for his/her careful reading and comments.

References

- [1] D. F. Anderson and A. Badawi, On ϕ -Prüfer rings and ϕ -Bézout rings, Houston J. Math., 30(2)(2004), 331-343.
- [2] D. F. Anderson and A. Badawi, On ϕ -Dedekind rings and ϕ -Krull rings, Houston J. Math., $\mathbf{31(4)}(2005)$, 1007-1022.
- [3] A. Badawi, On φ-pseudo-valuation rings, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 205(1999), 101–110.
- [4] A. Badawi, On divided commutative rings, Comm. Algebra, 27(3)(1999), 1465–1474.
- [5] A. Badawi, On φ-chained rings and φ-pseudo-valuation rings, Houston J. Math., 27(4)(2001), 725–736.
- [6] A. Badawi, On nonnil-Noetherian rings, Comm. Algebra, **31(4)**(2003), 1669–1677.
- [7] A. Badawi and D. E. Dobbs, Strong ring extensions and φ-pseudo-valuation rings, Houston J. Math., 32(2)(2006), 379–398.
- [8] A. Badawi and T. Lucas, On ϕ -Mori rings, Houston J. Math., 32(1)(2006), 1–31.
- [9] A. El Khalfi, H. Kim and N. Mahdou, On ϕ -piecewise Noetherian rings, Comm. Algebra, 49(3)(2021), 1324–1337.
- [10] B. Khoualdia and A. Benhissi, Nonnil-coherent rings, Beitr. Algebra Geom., 57(2)(2016), 297–305.
- [11] H. Kim and F. Wang, On φ-strong Mori rings, Houston J. Math., 38(2)(2012), 359–371.
- [12] W. Qi and X. L. Zhang, Some remarks on Nonnil-coherent rings and φ-IF rings, J. Algebra Appl., 21(11)(2021), Paper No. 2250211.
- [13] F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Algebr. Appl. 22, Springer, Singapore, 2016, xx+699 pp.
- [14] X. Y. Yang and Z. K. Liu, On nonnil-Noetherian rings, Southeast Asian Bull. Math., 33(6)(2009), 1215–1223.
- [15] X. L. Zhang and W. Zhao, On w-φ-flat modules and their homological dimensions, Bull. Korean Math. Soc., **58(4)**(2021), 1039–1052.
- [16] W. Zhao, On φ-flat modules and φ-Prüfer rings, J. Korean Math. Soc., 55(5)(2018), 1221–1233.

- [17] W. Zhao, On ϕ -exact sequences and ϕ -projective modules, J. Korean Math. Soc., $\mathbf{58(6)}(2021)$, 1513-1528.
- [18] W. Zhao, F. Wang and G. Tang, On ϕ -von Neumann regular rings, J. Korean Math. Soc., $\mathbf{50(1)}(2013)$, 219–229.
- [19] W. Zhao, F. Wang and X. Zhang, On ϕ -projective modules and ϕ -Prüfer rings, Comm. Algebra, 48(7)(2020), 3079–3090.
- [20] W. Zhao, M. Wang and Y. Pu, On nonnil-commutative diagrams and nonnil-projective modules, Comm. Algebra, 50(7)(2022), 2854–2867.
- [21] W. Zhao and X. L. Zhang, On nonnil-injective modules, J. Sichuan Normal Univ., 42(6)(2019), 808–815.