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FACTORIZATION PROPERTIES ON THE COMPOSITE HURWITZ

RINGS

Dong Yeol Oh

Abstract. Let A ⊆ B be an extension of integral domains with characteristic

zero. Let H(A,B) and h(A,B) be rings of composite Hurwitz series and composite

Hurwitz polynomials, respectively. We simply call H(A,B) and h(A,B) composite

Hurwitz rings of A and B. In this paper, we study when H(A,B) and h(A,B) are

unique factorization domains (resp., GCD-domains, finite factorization domains,

bounded factorization domains).

1. Introduction

Let R be an integral domain with quotient field K. The study of factorization in
R has been significant attention in commutative algebra and semigroup theory. The
classical situation is when R is a unique factorization domain (UFD), that is, when
every nonzero nonunit of R is a finite product of irreducible elements of R, uniquely up
to order and associates. In [1], Anderson et al. introduced several classes of integral
domains satisfying conditions weaker than unique factorization. The factorizations
have been studied extensively and there are many excellent results (see [9, 11, 22, 23]
for UFD and [1–4,8, 10, 13] for weaker than unique factorization).

We first introduce the various factorizations in [1] that we will study here. Following
Cohn [8], we say that R is atomic if every nonzero nonunit of R is a product of a
finite number of irreducible elements of R. We say that R satisfies the ascending
chain condition on principal ideals (ACCP) if there does not exist an infinite strictly
ascending chain of principal ideals of R. It is well known that any domain which
satisfies ACCP is atomic. However, the converse is not true; atomic domain that
does not satisfy ACCP was first constructed in [13]. According to Anderson et al. [1],
we say that R is a bounded factorization domain (BFD) if R is atomic and for each
nonzero nonunit of R there is a bound on the length of factorizations into products of
irreducible elements, and a finite factorization domain (FFD) if R is atomic and each
nonzero element of R has at most a finite number of nonassociate irreducible divisors.
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It is clear that UFDs are FFDs and that FFDs are BFDs. In general, we have the
following:

UFD =⇒ FFD =⇒ BFD =⇒ ACCP =⇒ atomic domain.

Let R be a commutative ring with identity and H(R) the set of formal expressions
of the form

∑∞
n=0 anX

n, where an ∈ R. Define addition and ∗-product on H(R) as
follows: For f =

∑∞
n=0 anX

n, g =
∑∞

n=0 bnX
n ∈ H(R),

f + g =
∞∑
n=0

(an + bn)Xn and f ∗ g =
∞∑
n=0

cnX
n,

where cn =
∑n

k=0

(
n
k

)
akbn−k and

(
n
k

)
= n!

(n−k)!k! for nonnegative integers n ≥ k. Un-

der these two operations, H(R) becomes a commutative ring with identity containing
R [17]. In [18], the ring H(R) is called a ring of Hurwitz series over R. The ring of
Hurwitz polynomials h(R) over R is the subring of H(R) consisting of formal expres-
sions of the form

∑n
k=0 akX

k. We simply call H(R) and h(R) the Hurwitz rings over
R.

For an extension A ⊆ B of commutative rings with identity, consider the sets
H(A,B) := {f ∈ H(B) | the constant term of f belongs to A} and h(A,B) := {f ∈
h(B) | the constant term of f belongs to A}. Then it is easy to see that H(A,B) and
h(A,B) are subrings of H(B) and h(B), respectively. We callH(A,B) (resp., h(A,B))
a ring of composite Hurwitz series (resp., ring of composite Hurwitz polynomial). We
simply call H(A,B) and h(A,B) composite Hurwitz rings of A and B. For more
information on (composite) Hurwitz rings, the readers can refer to [6, 7, 19–21].

It is known in [1, Proposition 2.2 and Theorem 5.1] that Noetherian domains and
Krull domains are BFDs and FFDs, respectively. So the rings of polynomials and
formal power series over a Noetherian domain (resp., Krull domain) are also BFDs
(resp., FFDs). On the other hand, Hurwitz rings over a Noetherian domain (resp.,
Krull domain) need not be Noetherian domains (resp. Krull domains); it is known
that for an integral domain R, h(R) (resp., H(R)) is a Noetherian domain if and only if
R is a Noetherian domain containing Q [7, Corollary 7.7], and h(R) is a Krull domain
if and only if R is a Krull domain containing Q [24, Theorem 4.5]. For example,
h(Z) and H(Z) are neither Noetherian domains nor Krull domains. It is also known
in [19, Theorem 2.4] that for an integral domain R with characteristic zero, R satisfies
ACCP if and only if h(R) (resp., H(R)) satisfies ACCP. Hence, the Hurwitz rings over
a Noetherian domian (resp., Krull domain) with characteristic zero satisfy ACCP, so
are atomic domains.

In this paper, we study the investigation of various factorization properties in the
(composite) Hurwitz rings. In Section 2, we investigate conditions for (composite)
Hurwitz rings to be (completely) integrally closed, and then study necessary and
sufficient conditions for such rings to be UFDs (resp., GCD-domains, Krull domains).
In Section 3, we give necessary and sufficient conditions for (composite) Hurwitz rings
to be BFDs or FFDs.

For an integral domain R, let R∗ denote its set of nonzero elements, U(R) its group
of units, and R[[X]] (resp.,R[X]) the ring of formal power series (resp., polynomials)
over R. Throughout, N0, Z, and Q denote the nonnegative integers, integers, and
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rational numbers, respectively. General references for any undefined terminology or
notation are [12,16].

2. Unique factorization domains

Let A ⊆ B be an extension of commutative rings with identity. In this section,
we determine the conditions for composite Hurwitz rings H(A,B) and h(A,B) to
be (completely) integrally closed domains, and then characterize when H(A,B) and
h(A,B) are UFDs (resp., GCD-domains, Krull domains).

We start with recalling the known results on composite Hurwitz rings which will
be needed in the sequel. It is known in [6, Proposition 1.1] that for a commutative
ring R with identity, H(R) (resp., h(R)) is an integral domain if and only if R is an
integral domain with characteristic zero. The following is a simple observation when
composite Hurwitz rings are integral domains.

Lemma 2.1. Let A ⊆ B be an extension of commutative rings with identity. Then
H(A,B) (resp., h(A,B)) is an integral domain if and only if A and B are integral
domains with characteristic zero.

For a commutative ring R with identity, the mapping ψ : R[[X]] → H(R) (resp.,
φ : R[X]→ h(R)) defined by

ψ (
∑∞

n=0 anX
n) =

∑∞
n=0 n!anX

n (resp., φ
(∑n

k=0 akX
k
)

=
∑n

k=0 k!akX
k)

is a ring homomorphism [18, Proposition 2.3]; and ψ is an isomorphism if and only if φ
is an isomorphism, if and only if R contains Q ( [18, Proposition 2.4] and [7, Theorem
1.4 and Corollary 1.5]). These are extended to composite Hurwitz rings as follows.

Lemma 2.2. [20, Lemma 2.1] Let A ⊆ B be an extension of commutative rings
with identity. Then the following conditions are equivalent.

(i) B contains Q.
(ii) The mapping ψ : A+XB[[X]]→ H(A,B) defined by ψ (

∑∞
i=0 aiX

i) =
∑∞

i=0 i!aiX
i

is a ring isomorphism.
(iii) The mapping φ : A+XB[X]→ h(A,B) defined by φ

(∑n
i=0 aiX

k
)

=
∑n

i=0 i!aiX
k

is a ring isomorphism.

We are now ready to study when composite Hurwitz rings H(A,B) and h(A,B)
are (completely) integrally closed.

Theorem 2.3. Let A ⊆ B be an extension of integral domains with characteristic
zero. Then the following statements hold.

(i) If h(A,B) (resp., H(A,B)) is integrally closed, then A is integrally closed and
Q ⊆ B.

(ii) If h(A,B) (resp., H(A,B)) is completely integrally closed, then A = B is com-
pletely integrally closed and Q ⊆ B.

Proof. Let R denote either h(A,B) or H(A,B). Since A is an integral domain with
characteristic zero, we may assume that Z ⊆ A.
(i) Suppose that R is integrally closed. Then, obviously, A is integrally closed. Let p
be a prime number.
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We claim that (1
p
Xk) ∗ (1

p
Xk) = 1

p2
(2k)!
k!k!

X2k ∈ R for some k > 1.

For each n ≥ 1, let w(n) be the largest power of p dividing n!. Then w(n) =
∑

1≤l[
n
pl

].

Let k = (p − 1)p2 + (p − 1)p + (p − 1)(= p3 − 1). Then w(k) = p2 + p − 2. Since
2k = p3 + (p − 1)p2 + (p − 1)p + (p − 2), we have w(2k) = 2p2 + 2p − 1. Hence,

w(2k) − 2w(k) = 3 ≥ 2, and thus p2 divides (2k)!
k!k!

. Therefore, (1
p
Xk) ∗ (1

p
Xk) =

1
p2

(2k)!
k!k!

X2k ∈ R for some k > 1.

By the claim, 1
p
Xk for some k > 1 is integral over R, and hence it should be in R, i.e.,

1
p
∈ B. Therefore, p is a unit element of B. Since p is an arbitrary prime number,

any nonzero integer n is a unit element of B. Thus B contains Q.

(ii) Suppose that R is completely integrally closed. Clearly, it is integrally closed,
and hence Q ⊆ B. By Lemma 2.2, either R ∼= A + XB[X] or R ∼= A + XB[[X]] is
completely integrally closed. Note that if A + XB[X] or A + XB[[X]] is completely
integrally closed, then A = B (∵ Suppose that A + XB[X] (resp., A + XB[[X]])
is completely integrally closed. Let K be the quotient field of A + XB[X] (resp.,
A + XB[[X]]). For 0 6= b ∈ B, b = bX

X
∈ K. Then bnX ∈ A + XB[X] (resp.,

bnX ∈ A+XB[[X]]) for all n ≥ 1. Hence b is almost integral over A+XB[X] (resp.,
A+XB[[X]]). So, b ∈ A.) Therefore, A = B is a completely integrally closed domain
containing Q.

Note that UFDs and Krull domains are completely integrally closed. When A 6= B,
composite Hurwitz rings h(A,B) and H(A,B) are neither UFDs nor Krull domains.
It is well known that an integral domains R is a UFD (resp., Krull domain) if and
only if R[X] is a UFD (resp., Krull domain). By applying Theorem 2.3 to UFDs and
Krull domains, we recover the following which are same as [24, Theorems 4.2 and 4.5].

Corollary 2.4. [24, Theorems 4.2 and 4.5] Let A be an integral domain with
characteristic zero. Then the following statements are equivalent.

(i) h(A) is a UFD (resp., Krull domain).
(ii) A is a UFD (resp., Krull domain) and Q ⊆ A.

(iii) A is a UFD (resp., Krull domain) and h(A) ∼= A[X].

The next result concerns the ring of Hurwitz series analog of Corollary 2.4. We note
that if R[[X]] is a UFD, then R is a UFD, but the converse is not true [11, Example
19.6]. We also note that R[[X]] is a Krull domain if and only if R is a Krull domain [11,
Proposition 1.7].

Corollary 2.5. Let A be an integral domain with characteristic zero. Then the
following statements holds.

(i) If H(A) is a UFD, then A is a UFD containing Q.
(ii) H(A) is a Krull domain if and only if A is a Krull domain containing Q if and

only if A is a Krull domain and H(A) ∼= A[[X]].

Recall that a GCD-domain is an integral domain with the property that any two
elements have a greatest common divisor, equivalently, the intersection of any two
principal ideals is a principal ideal. We now determine the conditions when h(A,B)
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(resp., H(A,B)) is a GCD-domain. Let R be an integral domain. A saturated multi-
plicative closed subset S of R is a splitting multiplicative set of R if for each r ∈ R,
r = as for some a ∈ R and s ∈ S such that aR ∩ tR = atR for all t ∈ S. It is
known [5, Theorems 2.10 and 2.11] that for an extension A ⊆ B of integral domains,
(1) A+XB[X] is a GCD-domain if and only if A is a GCD-domain and B = AS for a
splitting multiplicative set of A, and (2) A+XB[[X]] is a GCD-domain if and only if A
is a GCD-domain, B = AS for a splitting multiplicative set of A, and B[[X]](= AS[[X]])
is a GCD-domain.

Proposition 2.6. Let A ⊆ B be an extension of integral domains with character-
istic zero. Then the following statements hold.

(i) h(A,B) is a GCD-domain if and only if A is a GCD-domain and B = AS, where
S is a splitting multiplicative set of A containing all prime numbers.

(ii) H(A,B) is a GCD-domain if and only if A is a GCD-domain, B = AS, where S
is a splitting multiplicative set of A containing all prime numbers, and H(B)(=
H(AS)) is a GCD-domain.

Proof. The proofs of (i) and (ii) are almost same. So we give a proof of (i). (i) (⇒)
Since a GCD-domain is integrally closed, it follows from Lemma 2.2 and Theorem 2.3
that h(A,B) ∼= A + XB[X] is a GCD-domain and Q ⊆ B. By [5, Theorem 2.10], A
is a GCD-domain and B = AS, where S is a splitting multiplicative set of A. Since
Q ⊆ B = AS and S is a saturated multiplicative set, S contains all prime numbers.
(⇐) By [5, Theorem 2.10], A+XB[X] is a GCD-domain. Since S is a multiplicative
set of A containing all prime numbers, every prime number is a unit in B = AS. Thus
Q ⊆ B. By Lemma 2.2, h(A,B) ∼= A+XB[X] is a GCD-doamin.

It is well known that an integral domain R is a GCD-domain if and only if R[X]
is a GCD-domain. A UFD is a GCD-domain with ACCP. We note that R[[X]] need
not be a GCD-domain if R is a GCD-domain (for example, let R be a UFD such that
R[[X]] is not a UFD [11, Example 19.6]). When A = B in Proposition 2.6, we obtain

Corollary 2.7. Let A be an integral domain with characteristic zero. Then the
following assertions holds.

(i) h(A) is a GCD-domain if and only if A is a GCD-domain containing Q if and
only if A is a GCD-domain and h(A) ∼= A[X].

(ii) If H(A) is a GCD-domain, then A is a GCD-domain containing Q.

It is known [2, Corollary 1.7] that every saturated multiplicative set of a UFD is a
splitting set. We now give some examples.

Example 2.8. 1. The Hurwitz rings H(Z) and h(Z) are not UFDs. Since Z +
XQ[[X]] ∼= H(Z,Q) (resp., Z +XQ[X] ∼= h(Z,Q)) under the mapping ψ (resp.,
φ) in Lemma 2.2, the Hurwitz rings H(Z) and h(Z) contain subrings (which
are UFDs) of the form ψ(Z[[X]]) = {

∑∞
n=0 anX

n ∈ H(Z)
∣∣ an ∈ n!Z} and

φ(Z[X]) = {
∑n

k=0 akX
k ∈ h(Z)

∣∣ ak ∈ k!Z}, respectively.
2. We note that each overring of a PID R is a quotient ring of R. Let A ⊆ B

be overrings of Z. Then A + XB[X] and A + XB[[X]] are GCD-domains [5,
Theorems 2.10 and 2.11]. It follows from Proposition 2.6 that h(A,B) and
H(A,B) are GCD-domains if and only if B = Q.
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3. Let R be a UFD containing Z and S be a saturated multiplicative subset of
R. Then R + XRS[X] is a GCD-domain [5, Theorem 2.10]. It follows from
Proposition 2.6 that h(R,RS) is a GCD-domain if and only if p ∈ S for every
prime number p.

4. Let R = Z + YQ[Y ]. Then R is a GCD-domain. So R[X] is a GCD-domain,
but h(R) is not a GCD-domain.

3. Bounded and finite factorization domains

We recall that an integral domain R is a bounded factorization domain (BFD) if it
is atomic and for each nonzero nonunit x ∈ R, there is a positive integer N such that
whenever x = x1 · · ·xn for irreducible elements x1, . . . , xn of R, then n ≤ N . In [1],
Anderson et al. introduced length functions and characterized BFDs in terms of the
existence of length functions. We start with recalling characterization of BFDs with
length functions. For an integral domain R and nonnegative integer N0, a function
l : R∗ → N0 is called a length function of R if it satisfies the following two properties
: l(x) = 0 if and only if x ∈ U(R), and l(xy) ≥ l(x) + l(y) for any x, y ∈ R∗.

Lemma 3.1. [1, Theorem 2.4] Let R be an integral domain. Then the following
statements are equivalent.

(i) R is a BFD.
(ii) For each nonzero nonunit x ∈ R, there is a positive integer N such that whenever

x = x1 · · ·xn with each xi a nonunit of R, then n ≤ N .
(iii) There is a length function l : R∗ → N0.

We now consider the units of (composite) Hurwitz rings. Let R be a commutative
ring with identity. It is shown that (1) a Hurwitz series f =

∑∞
i=0 aiX

i is a unit in
H(R) if and only if a0 is a unit in R [18, Proposition 2.5], and (2) a Hurwitz polynomial
f =

∑n
i=0 aiX

i is a unit in h(R) if and only if a0 is a unit in R and for each i ≥ 1, ai
is nilpotent or some power of ai is with torsion [7, Theorem 3.1]. In [19, Lemma 2.2],
these are extended to composite Hurwitz rings as follows.

Lemma 3.2. [19, Lemma 2.2] Let A ⊆ B be an extension of commutative rings
with identity. Then the following assertions hold.

(i) A composite Hurwitz series f =
∑∞

i=0 aiX
i is a unit in H(A,B) if and only if

a0 is a unit in A.
(ii) A composite Hurwitz polynomial f =

∑n
i=0 aiX

i is a unit in h(A,B) if and only
if a0 is a unit in A and for each i ≥ 1, ai is nilpotent or some power of ai is with
torsion.

We now study when composite Hurwitz rings H(A,B) and h(A,B) are BFDs.
We need the following definition in [4]. Let A ⊆ B be an extension of integral
domains. We say that B is a bounded factorization domain with respect to A (A-
BFD) if for each nonzero nonunit b ∈ B, there is a positive integer N such that
whenever b = b1 · · · bn with each bi ∈ B a nonunit, then at most N of the bi’s are in A.
It is known [4, Proposition 2.1] that A+XB[X] is a BFD if and only if A+XB[[X]] is
a BFD if and only if U(A) = U(B)∩A and B is an A-BFD. The following, composite
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Hurwitz rings analog for BFDs of A + XB[X] and A + XB[[X]], can be obtained by
the similar arguments as in the proof of [4, Proposition 2.1]. We include a proof for
readers.

Theorem 3.3. Let A ⊆ B be an extension of integral domains with characteristic
zero. Then the following statements are equivalent.

(i) h(A,B) is a BFD.
(ii) H(A,B) is a BFD.

(iii) U(A) = U(B) ∩ A and B is an A-BFD.

Proof. Put R = h(A,B) and T = H(A,B).
(i) ⇒ (ii) Let R be a BFD. Then there is a length function lR : R∗ → N0 by

Lemma 3.1. Define a function lT : T ∗ → N0 by lT (
∑∞

i=n aiX
i) = lR(anX

n) + n
for every

∑∞
i=n aiX

i ∈ T with 0 6= an. We claim that the function lT is a length
function. Clearly, lT (

∑∞
i=n aiX

i) = 0 if and only if n = 0 and a0 is a unit in R, if
and only if n = 0 and a0 is a unit in T by Lemma 3.2. Let f, g ∈ T ∗. Write f, g
as follows: f =

∑∞
i=n aiX

i and g =
∑∞

j=m bjX
j with an 6= 0 and bm 6= 0. Then

f ∗ g =
∑∞

k=m+n ckX
k, where cm+n =

(
n+m
n

)
anbm. Hence we have the following:

lT (f ∗ g) = lR(

(
n+m

n

)
anbmX

n+m) + n+m

= lR(anX
n ∗ bmXm) + n+m

≥ lR(anX
n) + lR(bmX

m) + n+m = lT (f) + lT (g).

Therefore, T is a BFD.
(ii) ⇒ (iii) Suppose that T is a BFD. It is clear that U(A) ⊆ U(B) ∩ A. Let

a ∈ U(B)∩A. Then a−1 ∈ B. Consider ascending chain ( 1
an
X)n≥1 of principal ideals

of T . Since T is a BFD, T satisfies ACCP. So there exists a positive integer n such
that ( 1

an
X) = ( 1

am
X) for every m ≥ n. Hence 1

an+1X = 1
an
X ∗ f for some f ∈ T .

So a ∈ U(A). Therefore, U(A) = U(B) ∩ A. We now show that B is an A-BFD.
Let b ∈ B∗ be a nonunit. Since T is a BFD, there exists a positive integer n0 such
that bX can be the product of at most n0 nonunits in T by Lemma 3.1. Consider
the factorization of b as nonunits of B. Since U(A) = U(B) ∩ A, we can write
b = a1 · · · amb1 · · · bn, where a1, . . . , am are nonunits of A, and b1, . . . , bn are nonunits
in B \ A. Note that a1, . . . , am are nonunits in T and b1 · · · bnX is a nonunit in T by
Lemma 3.2. Hence, bX = (a1 · · · am) ∗ (b1 · · · bnX). Thus m ≤ n0 − 1. Therefore B is
an A-BFD.

(iii) ⇒ (i) Since B is an A-BFD and U(A) = U(B) ∩ A, it is easy to show that
A is a BFD. Let f =

∑n
i=0 biX

i with bn 6= 0 be a nonunit of R. If deg(f) = 0,
then f = b0 ∈ A. Since A is a BFD, there exists a positive integer N such that
whenever b0 = b1 · · · bn with each bi a nonunit of R, then n ≤ N . If deg(f) = n ≥ 1,
then since B is an A-BFD, there exists a positive integer N such that the number of
nonunit factors in A of a factorization of bn in B is at most N . Since deg(f) = n, a
factorization of f in R has at most N + n nonunit factors. Therefore, R is a BFD by
Lemma 3.1.

When A = B in Theorem 3.3, we obtain
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Corollary 3.4. Let A be an integral domain with characteristic zero. Then the
following statements are equivalent.

(i) A is a BFD.
(ii) h(A) is a BFD.

(iii) H(A) is a BFD.
(iv) A[X] is a BFD.
(v) A[[X]] is a BFD.

We now give examples of (composite) Hurwitz rings with bounded factorization
property which are not isomorphic to (composite) polynomial or power series rings.

Example 3.5. 1. The rings H(Z) and h(Z) are non-Noetherian BFDs.
2. Let K be an algebraic number field and OK be the ring of integers of K. Then
OK is a Dedekind domain. Since OK is a finitely generated Z-module, it follows
from [14, Proposition 2.1] or [15, Theorem 4] that Z+XOK [[X]] and Z+XOK [X]
are Noetherian domains, hence BFDs. By [4, Proposition 2.1] and Theorem 3.3,
H(Z,OK) and h(Z,OK) are BFDs. However, it follows from [20, Theorem 2.1]
that H(Z,OK) and h(Z,OK) are non-Noetherian domains.

We recall that an integral domain R is a finite factorization domain (FFD) if
each nonzero nonunit of R has only a finite number of nonassociate divisors. It is
shown in [1, Proposition 5.3] that R[X] is an FFD if and only if R is an FFD. The
following, Hurwitz polynomial analog of polynomial ring, can be obtained by the
similar arguments as in the proof of [1, Proposition 5.3]. We include a proof for
readers.

Proposition 3.6. Let R be an integral domain with characteristic zero. Then
h(R) is an FFD if and only if R is an FFD.

Proof. If h(R) is an FFD, then clearly R is an FFD. Suppose that R is an FFD
with quotient field K. Let 0 6= f ∈ h(R) be an nonunit. If f is constant, then
f has only finitely many nonassociate factors since R is an FFD. We may assume
that f is nonconstant. Suppose that f has an infinitely many nonassociate factors
in h(R). Note that by Lemma 2.2, h(K) ∼= K[X] is a UFD, and hence an FFD. So
there is an infinite set of nonassociate factors, say {fn}n≥1, of f in h(R) such that
f1h(K) = fnh(K) for each n ≥ 1. Since the unit group of h(K) is K∗ by Lemma 3.2,
every fn has the same degree. Let a and an be the leading coefficients of f and fn,
respectively. Since R is an FFD, an infinite number of an’s are associate in R. Hence,
we may assume that {fn}n≥1 is an infinite set of nonassociate factors of f in h(R)
such that all the fn’s have the same leading coefficients and f1h(K) = fnh(K). Since
f1 and fn have the same leading coefficients and f1h(K) = fnh(K), we have f1 = fn
for n ≥ 1, which is a contradiction.

It is shown in [4, Proposition 3.1] that for an extension A ⊆ B of integral domains,
A + XB[X] is an FFD if and only if B is an FFD and U(B)/U(A) is finite. The
following, composite Hurwitz polynomial analog of composite polynomial ring, can
be obtained by the similar arguments as in the proof of [4, Proposition 3.1]. We
include a proof for readers. For an extension A ⊆ B of integral domains, let [A :
B] := {x ∈ A|xB ⊆ A}.
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Proposition 3.7. Let A ⊆ B be an extension of integral domains with charac-
teristic zero. Then h(A,B) is an FFD if and only if B is an FFD and U(B)/U(A) is
finite.

Proof. (⇒) Suppose that h(A,B) is an FFD. If f ∈ h(B), then X ∗ f ∈ h(A,B).
So X ∈ [h(A,B) : h(B)]. It follows from [3, Theorem 4] that U(h(B))/U(h(A,B)) is
finite and h(B) is an FFD. By Lemma 3.2, U(h(B)) = U(B) and U(h(A,B)) = U(A).
Hence U(B)/U(A) is finite. By Proposition 3.6, B is an FFD.
(⇐) Suppose that B is an FFD and U(B)/U(A) is finite. By Proposition 3.6, h(B) is
an FFD. Let K be a quotient field of h(A,B). By Lemma 3.2, U(A) = U(h(A,B)) ⊆
U(h(B)) ∩ K∗ ⊆ U(B). Since U(B)/U(A) is finite, (U(h(B)) ∩ K∗)/U(h(A,B)) is
finite. It follows from [3, Theorem 3] that h(A,B) is an FFD.

Unlike the polynomial ring, the power series ring R[[X]] over an FFD R need not
be an FFD [3, Example 10]. It is also shown in [3, Corollary 2] that if R[[X]] is an
FFD, then R is completely integrally closed. The following, Hurwitz series analog of
power series, can be obtained by the similar argument as in the proof of [3, Corollary
2]. We include a proof for readers.

Proposition 3.8. Let R be an integral domain with characteristic zero. If H(R)
is an FFD, then R is completely integrally closed.

Proof. Suppose that H(R) is an FFD. Let K be the quotient field of R and α ∈ K∗
be almost integral over R. There exists 0 6= d ∈ R such that dαn ∈ R for every
n ≥ 1. So 0 6= d ∈ [R : R[α]]. Hence d ∈ [H(R) : H(R[α])]. Since H(R) is an
FFD, it follows from [3, Theorem 4] that U(H(R[α]))/U(H(R)) is finite. Suppose
that α 6∈ R. Note that 1 + αxn ∈ U(H(R[α])) for every n 6= 1 by Lemma 3.2. Since
U(H(R[α]))/U(H(R)) is finite, we have (1 + αXn)U(H(R)) = (1 + αXm)U(H(R))
for some m < n. So we have

(1 + αXn)(1 + αXm)−1 = (1 + αXn)(1− αXm + · · · ) = 1− αXm + · · · ∈ U(H(R)).

Hence α ∈ R, a contradiction.

Example 3.9. Put R := h(Z). Then R is an FFD by Proposition 3.6. Since R is
not completely integrally closed by Theorem 2.3, H(R) and R[[X]] are not FFDs.

It is known in [4, Proposition 3.3] that for an extension A ⊆ B of integral domains,
A+XB[[X]] is an FFD if and only if B[[X]] is an FFD and U(B)/U(A) is finite. The
following can be obtained by the similar arguments as in the proof of [4, Proposition
3.3]. We include a proof for readers.

Proposition 3.10. Let A ⊆ B be an extension of integral domains with charac-
teristic zero. Then H(A,B) is an FFD if and only if H(B) is an FFD and U(B)/U(A)
is finite.

Proof. (⇒) Suppose thatH(A,B) is an FFD. SinceX ∈ [H(A,B), H(B)], it follows
from [3, Theorem 4] that U(H(B))/U(H(A,B)) is finite and H(B) is an FFD. By
Lemma 3.2, U(H(B)) ∼= U(B) and U(h(A,B)) ∼= U(A). Hence U(B)/U(A) is finite.
(⇐) Suppose that H(B) is an FFD and U(B)/U(A) is finite. Let K be a quotient field
of h(A,B). By Lemma 3.2, U(A) ∼= U(H(A,B)) ⊆ U(H(B)) ∩K∗ ∼= U(B) ∩K∗ ⊆
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U(B). So (U(H(B)) ∩K∗)/U(H(A,B)) is finite. It follows from [3, Theorem 3] that
H(A,B) is an FFD.
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