COMMON FIXED POINT THEOREMS FOR THREE MAPPINGS IN GENERALIZED MODULAR METRIC SPACES

Sheela Arockiam* and Maria Joseph John

Abstract

In this paper, we obtain common fixed point theorems for three mappings of contractive type in the setting of generalized modular metric spaces. Our results generalize many results available in the literature including common fixed point theorems.

1. Introduction and Mathematical Preliminaries

Let (X, d) be a metric space and let $f: X \rightarrow X$ be a self-map. A point $x \in X$ is called a fixed point of f if the equation $f(x)=x$ is satisfied. In 1922, Steven Banach proved the very famnous theorem, "Banach Contraction Principle" in his thesis. He proved every contraction map on a complete metric space has a unique fixed point. Further, he proved in this theorem that if x_{0} is fixed in the complete metric space X and if $f: X \rightarrow X$ is a contraction, then the sequence of iteration $\left\{x_{n}\right\}$ defined by $x_{n+1}=f\left(x_{n}\right)$ converges to th e fixed point. This theorem has applications in all branches of science. Thereafter, many authors extended this theorem in all directions extending either the domain or the function.

In particular, Perov [6] proved generalized Banach Contraction Principle in the setting of complete vector/matrix valued metric spaces.

Muhammad Usman Ali et al [15] proved matrix version of contraction principle as follows:

Let X be a nonempty set and R^{m} is the set of all $m \times 1$ matrices with real entries. If $\alpha, \beta \in R^{m}, \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{m}\right)^{T}, \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)^{T}$ and $c \in R$, then define \leq by $\alpha \leq \beta(\alpha<\beta)$ if and only if $\alpha_{i} \leq \beta_{i}\left(\alpha_{i}<\beta_{i}\right)$ for each $i \in\{1,2, \ldots, m\}$ and $\alpha \leq c$, if and only if $\alpha_{i} \leq c$ for each $i \in\{1,2, \ldots, m\}$.

A mapping $d: X \times X \rightarrow R^{m}$ is called a vector-valued / generalized metric on X if the following properties are satisfied :

1. $d(x, y) \geq 0$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$;
2. $d(x, y)=d(y, x)$ for all $x, y \in X$;
3. $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$.
[^0]A set X equipped with a vector-valued / generalized metric d is called a vector-valued / generalized metric space and it is denoted by (X, d).

Throughout this paper we denote

1. $R_{+}=[0, \infty)$;
2. $M_{m \times m}\left(R_{+}\right)=$The set of all $m \times m$ matrices with real entries;
3. $D_{m \times m}([0,1))=$ The set of all $m \times m$ diagonal matrices with entries $\in[0,1)$;
4. Zero $m \times m$ matrix $=\overline{0}$;
5. Identity $m \times m$ matrix $=\mathrm{I}$;
6. $A^{0}=I, A \neq \overline{0}$.

Note that if $A \in D_{m \times m}([0,1))$, then $A \leq I$.
A matrix A is said to be convergent to zero if and only if $A^{n} \rightarrow \overline{0}$ as $n \rightarrow \infty$.
Following are some matrices which converges towards zero :

1. Any matrix $A=\left(\begin{array}{ll}b & b \\ a & a\end{array}\right)$, where $a, b \in R_{+}$and $a+b<1$.
2. Any matrix $A=\left(\begin{array}{ll}b & a \\ b & a\end{array}\right)$, where $a, b \in R_{+}$and $a+b<1$.
3. Any matrix $A=\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$, where $a, b, c \in R_{+}$and $\max \{a, c\}<1$.
4. If $A \in D_{m \times m}([0,1))$, then A converges to $\overline{0}$.

Theorem 1.1. [5] Let $A \in M_{m \times m}\left(R_{+}\right)$. The following statements are equivalent.

1. A is convergent towards zero.
2. The eigenvalues of A are in the open unit disc, that is, $|\lambda|<1$, for every $\lambda \in C$ with $\operatorname{det}(A-\lambda I)=0$.
3. The matrix $I-A$ is nonsingular and $(I-A)^{-1}=I+A+\ldots . .+A^{n}+\ldots \ldots$.

Definition 1.2. [15] A function $\omega:(0, \infty) \times X \times X \rightarrow[0, \infty]$ is known as a modular metric on X if the following axioms hold :

1. $\omega(\lambda, x, y)=0$ for every $\lambda>0$ if and only if $x=y$;
2. for each $x, y \in X, \omega(\lambda, x, y)=\omega(\lambda, y, x)$ for all $\lambda>0$;
3. for each $x, y, z \in X, \omega(\lambda+\mu, x, z) \leq \omega(\lambda, x, y)+\omega(\mu, y, z)$ for all $\lambda, \mu>0$.

A modular metric on X is said to be regular if (1) is replaced with the following axiom : $x=y$ if and only if $\omega(\lambda, x, y)=0$ for some $\lambda>0$.

For fix $x_{0} \in X$, the set $X_{\omega}=\left\{x \in X: \omega\left(\lambda, x, x_{0}\right) \rightarrow 0\right.$ as $\left.\lambda \rightarrow \infty\right\}$ is a modular space.

Definition 1.3. [15] Let (X, ω) be a modular generalized metric space.

1. The sequence $\left\{x_{n}\right\}$ is ω - convergent to $x \in X_{\omega}$ if and only if $\omega\left(1, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
2. The sequence $\left\{x_{n}\right\}$ is ω-Cauchy if $\omega\left(1, x_{m}, x_{n}\right) \rightarrow 0$ as $m, n \rightarrow \infty$.
3. A subset D of X_{ω} is ω - complete if any ω - Cauchy sequence in D is a $\omega-$ convergent in D.
4. A subset D of X_{ω} is ω-closed if ω - limit of each ω - convergent sequence of D always belongs to D.
5. A subset D of X_{ω} is ω-bounded if we have $\delta_{\omega}(D)=\sup \{\omega(1, x, y) ; x, y \in D\}<$ ∞.
6. A subset D of X_{ω} is ω-compact if for any $\left\{x_{n}\right\}$ in D, there exists a subsequence $\left\{x_{n_{k}}\right\}$ and $x \in D$ such that $\omega\left(1, x_{n_{k}}, x\right) \rightarrow 0$ as $k \rightarrow \infty$.
Definition 1.4. [15] Let (X, ω) be a modular generalized metric space and $\left\{x_{n}\right\}$ be a sequence in X_{ω}. Then ω satisfies the Δ_{M} condition if $\lim _{m, n \rightarrow \infty} \omega\left(m-n, x_{n}, x_{m}\right)=0$ for $m, n \in N$ with $m>n$ implies $\lim _{m, n \rightarrow \infty} \omega\left(\lambda, x_{n}, x_{m}\right)=0$ for all $\lambda>0$

Definition 1.5. [15] A modular generalized metric ω on X is strongly regular if the following conditions hold:

- condition (1) of modular generalized metric ω is replaced with $x=y$ if and only if $\omega(1, x, y)=0$.
- $\lim _{n \rightarrow \infty} \omega\left(1, x_{n}, x\right)=0$ and $\lim _{n \rightarrow \infty} \omega\left(1, x_{n}, y\right)=0$ implies $\omega(1, x, y)=0$.

Definition 1.6. [2] Let (X, d) be a metric space. A mapping $T: X \rightarrow X$ is said to be Sequentially Convergent if for each sequence $\left\{y_{n}\right\}$ in X, the sequence $\left\{T y_{n}\right\}$ converges implies $\left\{y_{n}\right\}$ is convergent.

Kannan [16] proved fixed point theorems for the mapping $T: X \rightarrow X$ defined on a complete metric space X satisfying the condition

$$
d(T x, T y) \leq \alpha[d(x, T x)+d(y, T y)]
$$

where $\alpha \in[0,1 / 2)$.
Chatterjee [17] proved fixed point theorems for the self mapping T defined on a complete metric space X satisfying the condition

$$
d(T x, T y) \leq \alpha[d(x, T y)+d(y, T x)]
$$

where $\alpha \in[0,1 / 2)$.
For further references, please refer all the papers in the reference including [1], [3], [8], [9], [10], [11], [12], [13] and [14].

Branciari [2] introduced the concept of sequentially convergent mapping. Malceski et al [4] proved the following common fixed point theorem.

Theorem 1.7. [4] Let (X, d) be a complete metric space, $T: X \rightarrow X$ be continuous, injective and sequentially convergent mapping and $S_{1}, S_{2}: X \rightarrow X$. If there exist $\alpha>0, \beta \geq 0$ such that $2 \alpha+\beta<1$ and

$$
d\left(T S_{1} x, T S_{2} y\right) \leq \alpha\left[d\left(T x, T S_{1} x\right)+d\left(T y, T S_{2} y\right)\right]+\beta[d(T x, T y)]
$$

for all $x, y \in X$, then S_{1} and S_{2} have a unique common fixed point.
Definition 1.8. [18] Let $A \in(0,+\infty], R_{A}^{+}=[0, A)$. Let $F: R_{A}^{+} \rightarrow R$ satisfy that

1. $F(0)=0$ and $F(t)>0$ for each $t \in(0, A)$;
2. F is nondecreasing on R_{A}^{+};
3. F is continuous.

Define $\Im[0, A)=\{F \| F$ satisfies (1) to (3) $\}$.
Definition 1.9. [18] Let $A \in(0,+\infty]$, Let $\psi: R_{A}^{+} \rightarrow R^{+}$satisfy that

1. $\psi(t)<t$ for each $t \in(0, A)$;
2. ψ is nondecreasing and right upper semi-continuous;
3. For each $t \in(0, A), \lim _{n \rightarrow \infty} \psi^{n}(t)=0$.

Define $\Psi[0, A)=\{\psi \| \psi$ satisfies (1) to (3) $\}$.
Xian Zhang [18] proved a common fixed point theorem for two maps in 2007.

Theorem 1.10. [18] Let X be a comlplete metric space and let $D=\sup \{d(x, y) / x, y \in$ $X\}$. Set $A=D$ if $D=\infty$ and $A>D$ if $D<\infty$. Suppose that $T, S: X \rightarrow X$, $F \in \Im[0, A)$ and $\psi \in \Psi[0, F(A-0))$ satisfy $F(d(T x, S y)) \leq \psi(F(M(x, y)))$ for each $x, y \in X$, where

$$
M(x, y)=\max \left(d(x, y), d(T x, x), d(S y, y), \frac{1}{2}[(d(T x, y)+d(S y, x)])\right.
$$

Then T and S have a unique common fixed point in X. Moreover for each $x_{0} \in X$, the iterated sequence $\left\{x_{n}\right\}$ with $x_{2 n+1}=T x_{2 n}$ and $x_{2 n+2}=S x_{2 n+1}$ converges to the common fixed point of T and S.

In this paper, we prove common fixed point theorems for three mappings in the setting of Generalized Modular Metric Spaces which are generalization of many results including Malceski et al [4] and Xian Zhang [18].

Definition 1.11. [7] $\omega(\lambda, a, B)=\inf \{\omega(\lambda, a, b): b \in B\}$
$\Omega(\lambda, A, B)=\max \left[\sup _{a \in A}(\omega(\lambda, a, B)), \sup _{b \in B}(\omega(\lambda, A, b))\right]$
If (X, ω) is a modular metric space, then $(C B(X), \Omega)$ is a metric space.
Theorem 1.12. [7] Let (X, ω) be a modular complete generalized metric space. Let $C B(X)$ denote the set of all nonempty closed and bounded subsets of X. Let $T:(X, \omega) \rightarrow C B(X)$ such that $\Omega(1, T x, T y) \leq A \omega(1, x, y)$ for some $m \times m$ matrix A converges to zero. If ω satisfies Δ_{M} condition, then T has a fixed point in X.

2. Main Results

In this section, we prove the existence of common fixed points for three contractive type mappings.

Theorem 2.1. Let X_{ω} be a strongly regular complete generalized modular metric space and $T: X_{\omega} \rightarrow X_{\omega}$ be continuous, injective, sequentially convergent mapping such that $T\left(X_{\omega}\right)$ is ω-complete. Let $S_{1}, S_{2}: X_{\omega} \rightarrow X_{\omega}$ be self maps such that

$$
\begin{gathered}
\omega\left(1, T S_{1} x, T S_{2} y\right) \leq A\left[\omega\left(1, T x, T S_{1} x\right)+\omega\left(1, T y, T S_{2} y\right)\right]+B[\omega(1, T x, T y)] \\
+C\left[\omega\left(1, T y, T S_{1} x\right)+\omega\left(1, T x, T S_{2} y\right)\right]
\end{gathered}
$$

where $A, B, C \in D_{m \times m}([0,1))$ with $2 A+B+2 C<I$ and $\omega\left(1, T x, S_{1} y\right) \leq \omega(1, x, y)$ (or) $\omega\left(1, T x, S_{2} y\right) \leq \omega(1, x, y)$ for all $x, y \in X_{\omega}$. Then T, S_{1} and S_{2} have a unique common fixed point.

Proof. Let T be continuous, injective and sequentially convergent mapping. Let $x_{0} \in X_{\omega}$. Define a sequence $\left\{x_{n}\right\}$ by $x_{2 n+1}=S_{1} x_{2 n}, x_{2 n+2}=S_{2} x_{2 n+1}$ for $n=0,1,2 \ldots$. Let n be even.

$$
\begin{aligned}
\omega\left(1, T x_{n}, T x_{n+1}\right)= & \omega\left(T S_{2} x_{n-1}, T S_{1} x_{n}\right) \\
\leq & A\left[\omega\left(1, T x_{n}, T S_{1} x_{n}\right)+\omega\left(1, T x_{n-1}, T S_{2} x_{n-1}\right)\right]+B\left[\omega\left(1, T x_{n}, T x_{n-1}\right)\right] \\
& \quad+C\left[\omega\left(1, T x_{n-1}, T S_{1} x_{n}\right)+\omega\left(1, T x_{n}, T S_{2} x_{n-1}\right)\right] \\
\leq & (A+C) \omega\left(1, T x_{n}, T x_{n+1}\right)+(A+B+C) \omega\left(1, T x_{n-1}, T x_{n}\right)
\end{aligned}
$$

Hence

$$
\omega\left(1, T x_{n}, T x_{n+1}\right) \leq(A+B+C)[I-(A+C)]^{-1} \omega\left(1, T x_{n-1}, T x_{n}\right)
$$

Since $2 A+B+2 C<I, T\left(X_{\omega}\right)$ is ω - complete, T is sequentially convergent and T is continuous, there exists $x \in X_{\omega}$ such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$. and hence $T x_{n} \rightarrow T x$. Now

$$
\begin{aligned}
\omega\left(1, T x, T S_{1} x\right) \leq & \omega\left(1, T x, T x_{2 n}\right)+\omega\left(1, T x_{2 n}, T S_{1} x\right) \\
= & \omega\left(1, T x, T x_{2 n}\right)+\omega\left(1, T S_{2} x_{2 n-1}, T S_{1} x\right) \\
\leq & \omega\left(1, T x, T x_{2 n}\right)+A\left[\omega\left(1, T x, T S_{1} x\right)+\omega\left(1, T x_{2 n-1}, T S_{2} x_{2 n-1}\right)\right] \\
& +B \omega\left(1, T x, T x_{2 n-1}\right)+C\left[\omega\left(1, T x_{2 n-1}, T S_{1} x\right)+\omega\left(1, T x, T S_{2} x_{2 n-1}\right)\right] \\
\rightarrow & (A+C) \omega\left(1, T x, T S_{1} x\right) \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence $\omega\left(1, T x, T S_{1} x\right) \leq(A+C) \omega\left(1, T x, T S_{1} x\right)$. Since $(A+C)<I, T x=T S_{1} x$.
Since T is injective, $x=S_{1} x$. Similarly $x=S_{2} x$. Since $\omega\left(1, T x, S_{2} y\right) \leq \omega(1, x, y)$,

$$
\begin{aligned}
\omega(1, x, T x) & \leq \omega\left(1, x, x_{2 n}\right)+\omega\left(1, x_{2 n}, T x\right) \\
& =\omega\left(1, x, x_{2 n}\right)+\omega\left(1, S_{2} x_{2 n-1}, T x\right) \\
& =\omega\left(1, x, x_{2 n}\right)+\omega\left(1, x_{2 n-1}, x\right) \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Therefore $T x=x$. Hence T, S_{1}, S_{2} have a common fixed point.
Let us prove the uniqueness : Suppose there exists $y \in X_{\omega}$ such that $S_{1} y=S_{2} y=y$.
Now

$$
\begin{aligned}
\omega(1, T x, T y)= & \omega\left(1, T S_{1} x, T S_{2} y\right) \\
\leq & A\left[\omega\left(1, T x, T S_{1} x\right)+\omega\left(1, T y, T S_{2} y\right)\right]+B[\omega(1, T x, T y)] \\
& \quad+C\left[\omega\left(1, T y, T S_{1} x\right)+\omega\left(1, T x, T S_{2} y\right)\right] \\
\leq & (B+2 C) \omega(1, T x, T y)
\end{aligned}
$$

Since $B+2 C<I, T x=T y$ and hence $x=y$.
ExAmple 2.2. Let $X=\{p, q, r\} \subseteq R^{3}$ where $p=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), q=\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right), r=\left(\begin{array}{l}5 \\ 0 \\ 0\end{array}\right)$ and
$d(p, q)=1, d(q, r)=3, d(p, r)=4$. Then X is a complete metric space in R^{3}.
Define $T: X \rightarrow X$, the identity map by $T(x)=I(x)=x$ for every $x \in X$.
Then T is continuous, injective and sequentially convergent.
Define $S_{1}, S_{2}: X \rightarrow X$ by $S_{1}(p)=S_{2}(p)=q, S_{1}(q)=S_{2}(q)=q ., S_{1}(r)=S_{2}(r)=p$.
Define $\omega:(0, \infty) \times X \times X \rightarrow R^{3}$ by $\omega(\lambda, p, q)=\frac{1}{\lambda}\left(\begin{array}{c}d(p, q) \\ 0 \\ 0\end{array}\right)$ Then (X, ω) is a strongly regular complete generalized modular metric space. Now,

$$
\begin{gathered}
\omega\left(1, T S_{1} p, T S_{2} q\right)=\left(\begin{array}{c}
d\left(T S_{1} p, T S_{2} q\right) \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
d(q, q) \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\text { Let } A=\frac{1}{8}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; B=\frac{2}{3}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; C=\frac{1}{30}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Then $2 A+B+2 C=\frac{59}{60}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)<I_{3}$. Now,
$A\left[\omega\left(1, T p, T S_{1} p\right)+\omega\left(1, T q, T S_{2} q\right)\right]+B\left(\omega(1, T p, T q)+C\left[\omega\left(1, T q, T S_{1} p\right)+\omega\left(1, T p, T S_{2} q\right)\right]\right.$

$$
=A\left(\begin{array}{c}
d(p, q) \\
0 \\
0
\end{array}\right)+B\left(\begin{array}{c}
d(p, q) \\
0 \\
0
\end{array}\right)+C\left(\begin{array}{c}
d(p, q) \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\frac{99}{120} \\
0 \\
0
\end{array}\right)
$$

Hence

$$
\begin{aligned}
\omega\left(1, T S_{1} p, T S_{2} q\right) \leq & A\left[\omega\left(1, T p, T S_{1} p\right)+\omega\left(1, T q, T S_{2} q\right)\right] \\
& +B\left(\omega(1, T p, T q)+C\left[\omega\left(1, T q, T S_{1} p\right)+\omega\left(1, T p, T S_{2} q\right)\right]\right.
\end{aligned}
$$

And

$$
\omega\left(1, T S_{1} q, T S_{2} r\right)=\left(\begin{array}{c}
d(p, q) \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

$$
A\left[\omega\left(1, T q, T S_{1} q\right)+\omega\left(1, T r, T S_{2} r\right)+B\left(\omega(1, T q, T r)+C\left[\omega\left(1, T r, T S_{1} q\right)+\omega\left(1, T q, T S_{2} r\right)\right]\right.\right.
$$

$$
=A\left(\begin{array}{c}
d(p, r) \\
0 \\
0
\end{array}\right)+B\left(\begin{array}{c}
d(q, r) \\
0 \\
0
\end{array}\right)+C\left(\begin{array}{c}
{[d(q, r)+d(p, q)]} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\frac{79}{30} \\
0 \\
0
\end{array}\right)
$$

Hence

$$
\begin{gathered}
\omega\left(1, T S_{1} q, T S_{2} r\right) \leq A\left[\omega\left(1, T q, T S_{1} q\right)+\omega\left(1, T r, T S_{2} r\right)+B(\omega(1, T q, T r)\right. \\
+C\left[\omega\left(1, T r, T S_{1} q\right)+\omega\left(1, T q, T S_{2} r\right)\right]
\end{gathered}
$$

Similarly

$$
\begin{gathered}
\omega\left(1, T S_{1} r, T S_{2} p\right) \leq A\left[\omega\left(1, T r, T S_{1} r\right)+\omega\left(1, T p, T S_{2} p\right)+B(\omega(1, T p, T r)\right. \\
+C\left[\omega\left(1, T p, T S_{1} r\right)+\omega\left(1, T r, T S_{2} p\right)\right]
\end{gathered}
$$

Also $\omega\left(1, T p, S_{1} q\right) \leq \omega(1, p, q)$ (or) $\omega\left(1, T p, S_{2} q\right) \leq \omega(1, p, q)$ for all $p, q \in X_{\omega}$. Thus T, S_{1} and S_{2} satisfy the hypothesis of Theorem 2.1.
Here q is the common fixed point of T, S_{1} and S_{2}.
The following result of Malceski et al [4] is a special case of the Theorem 2.1.
Corollary 2.3. Let X_{ω} be a complete strongly regular generalized modular metric space and $T: X_{\omega} \rightarrow X_{\omega}$ be continuous, injective, sequentially convergent mapping. Let $S_{1}, S_{2}: X_{\omega} \rightarrow X_{\omega}$ be self maps such that

$$
\omega\left(1, T S_{1} x, T S_{2} y\right) \leq A\left[\omega\left(1, T x, T S_{1} x\right)+\omega\left(1, T y, T S_{2} y\right)\right]+B[\omega(1, T x, T y)]
$$

where $A, B \in D_{m \times m}([0,1))$ such that $2 A+B<I$ and $\omega\left(1, T x, S_{1} y\right) \leq \omega(1, x, y)$ (or) $\omega\left(1, T x, S_{2} y\right) \leq \omega(1, x, y)$ for all $x, y \in X_{\omega}$, then T, S_{1} and S_{2} have a unique common fixed point.

Proof. The proof of the corollary follows from Theorem 2.1 by putting $C=0$.
The following result of Xian Zhang [18] is a special case of the Theorem 2.1.

Corollary 2.4. Let X_{ω} be a comlplete strongly regular generalized modular metric space and let $D=\sup \left\{\omega(1, x, y) / x, y \in X_{\omega}\right\}$. Set $A=D$ if $D=\infty$ and $A>D$ if $D<\infty$. Suppose that $T, S: X_{\omega} \rightarrow X_{\omega}, F \in \Im[0, A)$ and $\psi \in \Psi[0, f(A-0))$ satisfy $F(\omega(1, T x, S y)) \leq \psi(F(M(x, y)))$ for each $x, y \in X_{\omega}$, where

$$
M(x, y)=\max \left(\omega(1, x, y), \omega(1, T x, x), \omega(1, S y, y), \frac{1}{2}[\omega(1, T x, y)+\omega(1, S y, x)]\right)
$$

Then T and S have a unique common fixed point in X_{ω}. Moreover for each $x_{0} \in X_{\omega}$, the iterated sequence $\left\{x_{n}\right\}$ with $x_{2 n+1}=T x_{2 n}$ and $x_{2 n+2}=S x_{2 n+1}$ converges to the common fixed point of T and S.

Proof. Let $T=I$, the identity map. Then I is sequentially convergent, continuous and injective. Let $T=S_{1}, S=S_{2}$. Let

$$
M(x, y)=\max \left(\omega(1, x, y), \omega(1, T x, x), \omega(1, S y, y), \frac{1}{2}[\omega(1, T x, y)+\omega(1, S y, x)]\right)
$$

Then for every $x, y \in X_{\omega}, \frac{1}{2}[\omega(1, T x, y)+\omega(1, S y, x)] \leq M(x, y)$.
Let $A, B, C \in D_{m \times m}([0,1))$ with $2 A+B+2 C<I$. Define

$$
\begin{aligned}
\psi(t) & =\frac{1}{D}(A[\omega(1, T x, x)+\omega(1, y, S y)]+B[\omega(1, x, y)]+C[\omega(1, x, S y)+\omega(1, y, T x)]) t \\
& \leq(2 A+B+2 C) t<t
\end{aligned}
$$

Thus $\Psi(t)<t$ for every $t \in(0, A), \Psi$ is non-decreasing, $\Psi^{n}(t)=(2 A+B+2 C)^{n} t$ $\rightarrow 0$ and $F(t)=t$, then $F \in \Im[0, A)$. Hence

$$
\begin{gathered}
\omega\left(1, T S_{1} x, T S_{2} y\right) \leq A\left[\omega\left(1, T x, T S_{1} x\right)+\omega\left(1, T y, T S_{2} y\right)\right]+B[\omega(1, T x, T y)] \\
+C\left[\omega\left(1, T y, T S_{1} x\right)+\omega\left(1, T x, T S_{2} y\right)\right]
\end{gathered}
$$

Hence by Theorem 2.1, T and S have common fixed point.
Theorem 2.5. Let K be a non-empty compact subset of a generalized modular metric space X_{ω}. Let $T: K \rightarrow K$ be continuous, injective mapping and let S_{1}, S_{2} be self mappings of K. If there exists $A, B, C \in D_{m \times m}([0,1))$ such that $2 A+B+2 C \leq I$ and

$$
\begin{aligned}
& \omega\left(1, T S_{1} x, T S_{2} y\right) \leq A\left[\omega\left(1, T x, T S_{1} x\right)+\omega\left(1, T y, T S_{2} y\right)\right]+B[\omega(1, T x, T y)] \\
&+C\left[\omega\left(1, T y, T S_{1} x\right)+\omega\left(1, T x, T S_{2} y\right)\right]
\end{aligned}
$$

and $\omega\left(1, T x, S_{1} y\right) \leq \omega(1, x, y)$ (or) $\omega\left(1, T x, S_{2} y\right) \leq \omega(1, x, y)$ for all $x, y \in K$, then T, S_{1} and S_{2} have a common fixed point.

Proof. For each $n \in N$, let $x_{2 n+1}=S_{1} x_{2 n}, x_{2 n+2}=S_{2} x_{2 n+1}$ Then the sequence $\left\{x_{n}\right\} \subseteq K$. Since K is compact, $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ such that $\left\{x_{n_{k}}\right\} \rightarrow x$ as $k \rightarrow \infty$. Let $\left\{x_{n_{k}}\right\}=x_{n}$ Since T is continuous, $\left\{T x_{n_{k}}\right\} \rightarrow T x$.

$$
\begin{aligned}
\omega\left(1, T x, T S_{1} x\right) \leq & \omega\left(1, T x, T x_{2 n_{k}}\right)+\omega\left(1, T x_{2 n_{k}}, T S_{1} x\right) \\
= & \omega\left(1, T x, T x_{2 n_{k}}\right)+\omega\left(1, T S_{2} x_{2 n_{k}-1}, T S_{1} x\right) \\
\leq & \omega\left(1, T x, T x_{2 n_{k}}\right)+A\left[\omega\left(1, T x, T S_{1} x\right)+\omega\left(1, T x_{2 n_{k}-1}, T S_{2} x_{2 n_{k}-1}\right)\right] \\
& \quad+B\left[\omega\left(1, T x, T x_{2 n_{k}-1}\right)\right]+C\left[\omega\left(1, T x_{2 n_{k}-1}, T S_{1} x\right)+\omega\left(1, T x, T S_{2} x_{2 n_{k}-1}\right)\right] \\
\rightarrow & (A+C) \omega\left(1, T x, T S_{1} x\right) \text { as } k \rightarrow \infty .
\end{aligned}
$$

Since $(A+C)<I, T$ is injective, $x=S_{1} x$. Similarly $x=S_{2} x$.
Since $\omega\left(1, T x, S_{2} y\right) \leq \omega(1, x, y)$,
$\omega(1, x, T x) \leq \omega\left(1, x, x_{2 n_{k}}\right)+\omega\left(1, x_{2 n_{k}}, T x\right) \leq \omega\left(1, x, x_{2 n_{k}}\right)+\omega\left(1, x_{2 n_{k}-1}, x\right) \rightarrow 0$ as $k \rightarrow \infty$. Therefore $T x=x$. Hence T, S_{1}, S_{2} have a common fixed point.

Theorem 2.6. Let K be a closed bounded convex subset of a generalized modular metric space and let $T: K \rightarrow K$ be a injective, continuous, sequentially convergent and affine with respect to $q \in F(T)$. Let $S_{1}, S_{2}: K \rightarrow K$. If there exists $A, B, C \in$ $D_{m \times m}([0,1))$ such that $(3 A+B+3 C) \leq I$ and

$$
\begin{aligned}
& \omega\left(1, T S_{1} x, T S_{2} y\right) \leq A\left[\omega\left(1, T y, T S_{2} y\right)+\omega\left(1, T x, T S_{1} x\right)\right]+B[\omega(1, T x, T y)] \\
&+C\left[\omega\left(1, T x, T S_{2} y\right)+\omega\left(1, T y, T S_{1} x\right)\right]
\end{aligned}
$$

and $\omega\left(1, T x, S_{1} y\right) \leq \omega(1, x, y)$ (or) $\omega\left(1, T x, S_{2} y\right) \leq \omega(1, x, y)$ for all $x, y \in K$, then T, S_{1} and S_{2} have a common fixed point.

Proof. Fix $x_{0} \in K$. Define a sequence $\left\{x_{n}\right\}$ by $x_{2 n+1}=\left(1-\alpha_{n}\right) q+\alpha_{n} S_{1} x_{2 n}$ amd $x_{2 n+2}=\left(1-\alpha_{n}\right) q+\alpha_{n} S_{2} x_{2 n+1}$, where $\alpha_{n} \in(0,1)$ such that $\alpha_{n} \rightarrow 1$ as $n \rightarrow \infty$. Suppose n is even. Using the same technique used in Theorem 2.5, one can easily prove that

$$
\omega\left(1, T x_{n}, T x_{n+1}\right) \leq \alpha_{n} I \omega\left(1, T x_{n-1}, T x_{n}\right)
$$

Since X_{ω} is ω-complete, T is sequentially convergent and T is continuous, there exists $x \in X_{\omega}$ such that $x_{n} \rightarrow x$ and hence $T x_{n} \rightarrow T x$. Similarly

$$
\begin{aligned}
\omega\left(1, T x, T S_{2} x\right) \leq & \omega\left(1, T x, T x_{2 n+1}\right)+\left(1-\alpha_{n}\right) \omega\left(1, T q, T S_{2} x\right)+A \alpha_{n} \omega\left(1, T x_{2 n}, T x_{2 n+1}\right) \\
& +A \alpha_{n} \omega\left(1, T x, T S_{2} x\right)+B \alpha_{n} \omega\left(1, T x_{2 n}, T x\right)+C \alpha_{n}\left[\omega\left(1, T x_{2 n}, T x\right)\right. \\
& \left.+\omega\left(1, T x, T S_{2} x\right)+\omega\left(1, T x, T x_{2 n}\right)+\omega\left(1, T x_{2 n}, T S_{1} x_{2 n}\right)\right] \\
\rightarrow & (A+C) \omega\left(1, T x, T S_{2} x\right)
\end{aligned}
$$

Since $(A+C)<I, T x=T S_{2} x$. Since T is injective, $x=S_{2} x$. Similarly $x=S_{1} x$.

$$
\begin{aligned}
\omega(1, x, T x) & \leq \omega\left(1, x, T x_{2 n+1}\right)+\omega\left(1, T x_{2 n+1}, T x\right) \\
& =\omega\left(1, x, T x_{2 n+1}\right)+\omega\left(1, T\left(\left(1-\alpha_{n}\right) q+\alpha_{n} S_{1} x_{2 n}\right), T x\right) \\
& \leq \omega\left(1, x, T x_{2 n+1}\right)+\left(1-\alpha_{n}\right) \omega(1, T q, T x)+\alpha_{n} \omega\left(1, T S_{1} x_{2 n}, T x\right) \\
& \leq \omega\left(1, x, T x_{2 n+1}\right)+\left(1-\alpha_{n}\right) \omega(1, T q, T x)+\alpha_{n} \omega\left(1, T x_{2 n}, T x\right) \\
& \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence $x=T x$. Therefore x is a common fixed point of T, S_{1} and S_{2}.

3. Applications

In this section, we obtain the existence theorem for the following system of integral equations:

$$
\begin{equation*}
x(t)=f(t)+\int_{a}^{b} g_{1}(t, s, x(s), y(s)) d s ; y(t)=f(t)+\int_{a}^{b} g_{2}(t, s, x(s), y(s)) d s \tag{1}
\end{equation*}
$$

for each $t, s \in I=[a, b]$, where $g_{i}: I \times I \times R \times R \rightarrow R$ is a continuous function for $i=1,2$. We denote ($C[a, b], R$), the space of all continuous real valued functions defined on $\mathrm{I}=[\mathrm{a}, \mathrm{b}]$.

Theorem 3.1. Let $X=(C[a, b], R)$. Consider the operators $T_{i}, S_{1}, S_{2}: X \times Y \rightarrow X$ given by the formula

$$
T_{i}\left(S_{i}(x(t), y(t))=f(t)+\int_{a}^{b} g_{i}(t, s, x(s), y(s)) d s\right.
$$

where $g_{i}: I \times I \times R \times R \rightarrow R$ is a continuous function for $i=1,2$. Also, assume that for every $t, s \in[a, b]$ and $x, y, u, v \in X$, we have

$$
\begin{aligned}
\left|g_{i}(t, s, x(s), y(s))-g_{i}(t, s, u(s), v(s))\right| \leq & a_{i 1}\left\{\left|T_{1} x(s)-T_{1} S_{1} x(s)\right|+\left|T_{1} y(s)-T_{1} S_{2} y(s)\right|\right\} \\
& +a_{i 2}\left\{\left|T_{2} x(s)-T_{2} S_{1} x(s)\right|+\left|T_{2} y(s)-T_{2} S_{2} y(s)\right|\right\} \\
& +b_{i 1}\{|x(s)-u(s)|\}+b_{i 2}\{|y(s)-v(s)|\} \\
& +c_{i 1}\left\{\left|T_{1} x(s)-T_{1} S_{2} y(s)\right|+\left|T_{1} y(s)-T_{1} S_{1} x(s)\right|\right\} \\
& +c_{i 2}\left\{\left|T_{2} y(s)-T_{2} S_{2} y(s)\right|+\left|T_{2} y(s)-T_{2} S_{1} x(s)\right|\right\}
\end{aligned}
$$

where $A=(b-a)\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) ; B=(b-a)\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right) ; C=(b-a)\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right)$ and $2 A+B+2 C$ converge to zero if T is a sequence and convergent and if $\left|T S_{1} x-T S_{2} y\right| \leq$ $|x-y|$, then the system of integral equations (1) has at least one solution.

Proof. By the hypothesis of this theorem, we note that for each $t, s \in[a, b]$ and $x, y, u, v \in X$, we have

$$
\begin{aligned}
&\left|T_{i}(x(t), y(t))-T_{i}(u(t), v(t))\right| \leq \int_{a}^{b}\left|g_{i}(t, s, x(s), y(s))-g_{i}(t, s, u(s), v(s))\right| d s \\
& \leq \int_{a}^{b}\left[a_{i 1}\left\{\left|T_{1} x(s)-T_{1} S_{1} x(s)\right|+\left|T_{1} y(s)-T_{1} S_{2} y(s)\right|\right\}\right. \\
&+a_{i 2}\left\{\left|T_{2} x(s)-T_{2} S_{1} x(s)\right|+\left|T_{2} y(s)-T_{2} S_{2} y(s)\right|\right\} \\
&+b_{i 1}\{|x(s)-u(s)|\}+b_{i 2}\{|y(s)-v(s)|\} \\
&+c_{i 1}\left\{\left|T_{1} x(s)-T_{1} S_{2} y(s)\right|+\left|T_{1} y(s)-T_{1} S_{1} x(s)\right|\right\} \\
&\left.+c_{i 2}\left\{\left|T_{2} y(s)-T_{2} S_{2} y(s)\right|+\left|T_{2} y(s)-T_{2} S_{1} x(s)\right|\right\}\right] d s \\
&\left|T_{i}(x(t), y(t))-T_{i}(u(t), v(t))\right| \leq(b-a)\left[a_{i 1}\left(\max _{s \in I}\left\{\left|T_{1} x(s)-T_{1} S_{1} x(s)\right|+\left|T_{1} y(s)-T_{1} S_{2} y(s)\right|\right\}\right)\right. \\
&+a_{i 2}\left(\max _{s \in I}\left\{\left|T_{2} x(s)-T_{2} S_{1} x(s)\right|+\left|T_{2} y(s)-T_{2} S_{2} y(s)\right|\right\}\right) \\
&+b_{i 1}\left(\max _{s \in I}\{|x(s)-u(s)|\}\right)+b_{i 2}\left(\max _{s \in I}\{|y(s)-v(s)|\}\right) \\
&+c_{i 1}\left(\max _{s \in I}\left\{\left|T_{1} x(s)-T_{1} S_{2} y(s)\right|+\left|T_{1} y(s)-T_{1} S_{1} x(s)\right|\right\}\right) \\
&\left.+c_{i 2}\left(\max _{s \in I}\left\{\left|T_{2} y(s)-T_{2} S_{2} y(s)\right|+\left|T_{2} y(s)-T_{2} S_{1} x(s)\right|\right\}\right)\right] d s
\end{aligned}
$$

Define the operator $T: W=X \times X \rightarrow W=X \times X$ by $T(\bar{x})=T\left(x_{1}, x_{2}\right)=$ $\left(T_{1}\left(x_{1}, x_{2}\right), T_{2}\left(x_{1}, x_{2}\right)\right)$ for each $\bar{x}=\left(x_{1}, x_{2}\right) \in X \times X$, and consider the modular generalized metric space

$$
\begin{gathered}
\omega:(0, \infty) \times W \times W \rightarrow R^{2} \text { by } \\
\omega(\lambda, \bar{x}(t), \bar{y}(t))=\frac{1}{|\lambda|}\binom{\max _{t \in I}\left\{\left|x_{1}(t)-y_{1}(t)\right|\right\}}{\max _{t \in I}\left\{\left|x_{2}(t)-y_{2}(t)\right|\right\}}
\end{gathered}
$$

It is trivial that W is ω - complete and

$$
\begin{aligned}
\omega\left(1, T S_{1} \bar{x}, T S_{2} \bar{y}\right) \leq & A\left[\omega\left(1, T \bar{x}, T S_{1} \bar{x}\right)+\omega\left(1, T \bar{y}, T S_{2} \bar{y}\right)\right]+B[\omega(1, \bar{x}, \bar{y})] \\
& +C\left[\omega\left(1, T \bar{x}, T S_{2} \bar{y}\right)+\omega\left(1, T \bar{y}, T S_{1} \bar{x}\right)\right]
\end{aligned}
$$

Hence, by Theorem 1.12, there exist at least one $\bar{x} \in W$ such that $T \bar{x}=\bar{x}$. The system of integral equations (1) has at least one solution.

4. Conclusion

In this paper, we proved Common fixed points for three Contractive type mappings. Further, we have provided an example for Theorem 2.1 and an application.

References

[1] A.A.N. Abdou, Fixed points of Kannan maps in modular metric spaces, AIMS Mathematics 5 (6) (2020), 6395-6403.
https://doi.org/10.3934/math. 2020411
[2] A. Branciari, "A fixed point theorem of Banach- Caccippoli type on a class of generalized metric spaces", Publ. Math. Debrecen, 57 (1-2) (2000) 31-37.
[3] A. Gholidahneh, S. Sedghi, O. Ege, Z. D. Mitrovic and M. de la Sen, The Meir-Keeler type contractions in extended modular b-metric spaces with an application, AIMS Mathematics, 6 (2) (2021) 1781-1799. https://doi.org/10.3934/math. 2021107
[4] Aleksa Malčeski, Samoil Malčeski, Katerina Anevska and Risto Malčeski, New Extension of Kannan and Chatterjea Fixed Point Theorems on Complete Metric Spaces, British Journal of Mathematics and Computer Science, 17 (1) (2016) 1-10. https://doi.org/10.9734/BJMCS/2016/25864
[5] Alexandru-Darius Filip and Adrian Petruşel, Fixed Point Theorems on Spaces Endowed with Vector-Valued Metrics, Hindawi Publishing Corporation Fixed Point Theory and Applications, (2010).
https://doi.org/10.1155/2010/281381
[6] Al Pervo On the Cauchy problem for a system of ordinary differential equations, Pvi-blizhen met Reshen Diff Uvavn, 2 (1964) 115-134.
[7] A. Sheela and U. Karuppiah, A note on Nadler's fixed point theorem in modular generalized metric space, JP Journal of Fixed Point Theory and Applications, 14 (3) (2019) 107-114. http://dx.doi.org/10.17654/FP014030107
[8] C. Alaca, M.E. Ege and C. Park, Fixed point results for modular ultrametric spaces, Journal of Computational Analysis and Applications, 20 (7) (2016) 1259-1267.
[9] G.A. Okeke, D. Francis and M. de la Sen, Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications, Heliyon, 6 (8) (2020) e04785. https://doi.org/10.1016/j.heliyon.2020.e04785
[10] H. Hosseinzadeh and V. Parvaneh, MeirKeeler type contractive mappings in modular and partial modular metric spaces, Asian-European Journal of Mathematics, 13 (1) (2020) 20500874. 5 https://doi.org/10.1142/S1793557120500874
[11] M.E. Ege and C. Alaca, Fixed point results and an application to homotopy in modular metric spaces, Journal of Nonlinear Science and Applications, 8 (6) (2015), 900-908.
http://dx.doi.org/10.22436/jnsa.008.06.01
[12] M.E. Ege and C. Alaca, Some properties of modular S-metric spaces and its fixed point results, Journal of Computational Analysis and Applications, 20(1) (2016) 24-33.
[13] M.E. Ege and C. Alaca, Some Results for Modular b-Metric spaces and an Application to System of linear Equations, Azerbaijan Journal of Mathematics, 8 (1) (2018), 3-14. ISSN 2218-6816
[14] M. Ramezani, H. Baghani, O. Ege and M. De la Sen, A new version of Schauder and Petryshyn type fixed point theorems in s-modular function spaces, Symmetry-Basel, 12 (1) (2020), 1-8. https://doi.org/10.3390/sym12010015
[15] Muhammad Usman Ali, Tayyab Kamran, Hassan Houmani and Mihai Postolache, On the Solution of a System of Integral Equations via Matrix Version of Banach Contraction Principle, Communications in Mathematics and Applications, 8 (3) (2017) 207-215. https://www.rgnpublications.com/journals/index.php/cma/article/view/548
[16] R. Kannan, Some Results on Fixed Points-II, MATHEMATICAL NOTES, The American Mathematical Monthly, 76(4) (1969) 405-408. https://doi.org/10.2307/2316437
[17] S. K. Chatterjea, Fixed Point Theorems, C.R. ACad., Bulgare Sci, 25 (1972), 727-730.
[18] Xian Zhang, Common fixed point theorems for some new generalized contractive type mappings, Journal of Mathematical Analysis and Applications, 333 (2) (2007), 780-786. https://doi.org/10.1016/j.jmaa.2006.11.028

Sheela Arockiam

Department of Mathematics, St. Joseph's College (Autonomous),
Tiruchirappalli, 620001, TN India
E-mail: sheela_arockiam@yahoo.com

Maria Joseph John

Department of Mathematics, St. Joseph's College (Autonomous),
Tiruchirappalli, 620001, TN India
E-mail: joseph80john@gmail.com

[^0]: Received September 24, 2023. Revised December 31, 2023. Accepted December 31, 2023.
 2010 Mathematics Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
 Key words and phrases: Modular metric space, ω-convergent, ω-Cauchy, ω-complete, ω-compact, common fixed point.

 * Corresponding author.
 (C) The Kangwon-Kyungki Mathematical Society, 2024.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

