DOI QR코드

DOI QR Code

Pulmonary toxicity assessment of polypropylene, polystyrene, and polyethylene microplastic fragments in mice

  • Isaac Kwabena Danso (Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology) ;
  • Jong-Hwan Woo (Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology) ;
  • Seung Hoon Baek (Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology) ;
  • Kilsoo Kim (Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation) ;
  • Kyuhong Lee (Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology)
  • Received : 2023.10.07
  • Accepted : 2023.12.28
  • Published : 2024.04.15

Abstract

Polypropylene (PP), polystyrene (PS), and polyethylene (PE) plastics are commonly used in household items such as electronic housings, food packaging, bottles, bags, toys, and roofing membranes. The presence of inhalable microplastics in indoor air has become a topic of concern as many people spent extended periods of time indoors during the COVID-19 pandemic lockdown restrictions, however, the toxic effects on the respiratory system are not properly understood. We examined the toxicity of PP, PS, and PE microplastic fragments in the pulmonary system of C57BL/6 mice. For 14 days, mice were intratracheally instilled 5 mg/kg PP, PS, and PE daily. The number of inflammatory cells such as macrophages, neutrophils, and eosinophils in the bronchoalveolar lavage fluid (BALF) of PS-instilled mice was significantly higher than that in the vehicle control (VC). The levels of inflammatory cytokines and chemokines in BALF of PS-instilled mice increased compared to the VC. However, the inflammatory responses in PP- and PE-stimulated mice were not significantly different from those in the VC group. We observed elevated protein levels of toll-like receptor (TLR) 2 in the lung tissue of PP-instilled mice and TLR4 in the lung tissue of PS-instilled mice compared with those to the VC, while TLR1, TLR5, and TLR6 protein levels remained unchanged. Phosphorylation of nuclear factor kappa B (NF-κB) and IκB-α increased significantly in PS-instilled mice compared with that in VC. Furthermore, Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome components including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and Caspase-1 in the lung tissue of PS-instilled mice increased compared with that in the VC, but not in PP- and PE-instilled mice. These results suggest that PS microplastic fragment stimulation induces pulmonary inflammation due to NF-κB and NLRP3 inflammasome activation by the TLR4 pathway.

Keywords

Acknowledgement

This work was supported by Korea Environment Industry & Technology Institute (KEITI) through the Measurement and Risk assessment Program for Management of Microplastics Project, funded by Korea Ministry of Environment (MOE) (grant number HE-2305).

References

  1. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364:1985-1998. https://doi.org/10.1098/rstb.2008.0205
  2. Kannan K, Vimalkumar K (2021) A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens. Front Endocrinol (Lausanne) 12:724989. https://doi.org/10.3389/fendo.2021.724989
  3. Prata JC (2018) Airborne microplastics: Consequences to human health? Environ Pollut 234:115-126. https://doi.org/10.1016/j.envpol.2017.11.043
  4. Andrady AL (2017) The plastic in microplastics: A review. Mar Pollut Bull 119:12-22. https://doi.org/10.1016/j.marpolbul.2017.01.082
  5. Schwarzer M, Brehm J, Vollmer M, Jasinski J, Xu C, Zainuddin S, Frohlich T, Schott M, Greiner A, Scheibel T, Laforsch C (2022) Shape, size, and polymer dependent effects of microplastics on Daphnia magna. J Hazard Mater 425:128136. https://doi.org/10.1016/j.jhazmat.2021.128136
  6. Cai L, Wang J, Peng J, Tan Z, Zhan Z, Tan X, Chen Q (2017) Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environ Sci Pollut Res 24:24928-24935. https://doi.org/10.1007/s11356-017-0116-x
  7. Wright SL, Ulke J, Font A, Chan KLA, Kelly FJ (2020) Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ Int 136:105411. https://doi.org/10.1016/j.envint.2019.105411
  8. Dris R, Gasperi J, Saad M, Mirande C, Tassin B (2016) Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar Pollut Bull 104:290-293. https://doi.org/10.1016/j. marpo lbul.2016.01.006
  9. Chen Q, Gao J, Yu H, Su H, Yang Y, Cao Y, Zhang Q, Ren Y, Hollert H, Shi H, Chen C, Liu H (2022) An emerging role of microplastics in the etiology of lung ground glass nodules. Environ Sci Eur 34:25. https://doi.org/10.1186/s12302-022-00605-3
  10. Liao Z, Ji X, Ma Y, Lv B, Huang W, Zhu X, Fang M, Wang Q, Wang X, Dahlgren R, Shang X (2021) Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China. J Hazard Mater 417:126007. https://doi.org/10.1016/j.jhazm at. 2021.126007
  11. Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, Tassin B (2017) A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut 221:453-458. https://doi.org/10.1016/j.envpol.2016.12.013
  12. Zhai X, Zheng H, Xu Y, Zhao R, Wang W, Guo H (2023) Characterization and quantification of microplastics in indoor environments. Heliyon 9:e15901. https://doi.org/10.1016/j.heliyon.2023.e15901
  13. Cox KD, Covernton GA, Davies HL, Dower JF, Juanes F, Dudas SE (2019) Human consumption of microplastics. Environ Sci Technol 53:7068-7074. https://doi.org/10.1021/acs. est.9b015 17
  14. Allen S, Allen D, Phoenix VR, Roux GL, Jimenez PD, Simonneau A, Binet S, Galop D (2019) Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci 12:339-344. https://doi.org/10.1038/s41561-019-0335-5
  15. Kernchen S, Loder MGJ, Fischer F, Fischer D, Moses SR, Georgi C, Nolscher AC, Held A, Laforsch C (2022) Airborne microplastic concentrations and deposition across the Weser River catchment. Sci Total Environ 818:151812. https://doi.org/10.1016/j. scito tenv.2021.151812
  16. Jenner LC, Rotchell JM, Bennett RT, Cowen M, Tentzeris V, Sadofsky LR (2022) Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci Total Environ 831:154907. https://doi.org/10.1016/j. scitotenv.2022.154907
  17. Huang S, Huang X, Bi R, Guo Q, Yu X, Zeng Q, Huang Z, Liu T, Wu H, Chen Y, Xu J, Wu Y, Guo P (2022) Detection and analysis of microplastics in human sputum. Environ Sci Technol 56:2476-2486. https://doi.org/10.1021/acs.est.1c038 59
  18. Facciola A, Visalli G, Ciarello MP, Pietro AD (2021) Newly emerging airborne pollutants: current knowledge of health impact of micro and nanoplastics. Int J Environ Res Public Health 18:2997. https://doi.org/10.3390/ijerph18062997
  19. Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51:6634-6647. https://doi.org/10.1021/acs.est.7b00423
  20. Hours M, Fevotte J, Lafont S, Bergeret A (2007) Cancer mortality in a synthetic spinning plant in Besancon France. Occup Environ Med 64:581. https://doi.org/10.1136/oem. 2006.028282
  21. Turcotte SE, Chee A, Walsh R, Grant FC, Liss GM, Boag A, Forkert L, Munt PW, Lougheed MD (2013) Flock worker's lung disease: natural history of cases and exposed workers in Kingston. Ontario Chest 143:1642-1648. https://doi.org/10.1378/chest.12-0920
  22. Kovach MA, Standiford TJ (2011) Toll like receptors in diseases of the lung. Int Immunopharmacol 11:1399-1406. https://doi.org/10.1152/ajplung.00002.2021
  23. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135-145. https://doi.org/10.1038/35100529
  24. Jiang D, Liang J, Li Y, Noble PW (2006) The role of Toll-like receptors in non-infectious lung injury. Cell Res 16:693-701. https://doi.org/10.1038/sj.cr.73100 85
  25. Ben DF, Yu XY, Ji GY, Zheng DY, Lv KY, Ma B, Xia ZF (2012) TLR4 mediates lung injury and inflammation in intestinal ischemia-reperfusion. J Surg Res 174:326-333. https://doi.org/10.1016/j. jss. 2010.12. 005
  26. Tao X, Li J, He J, Jiang Y, Liu C, Cao W, Wu H (2023) Pinellia ternata (Thunb.) Breit. attenuates the allergic airway inflammation of cold asthma via inhibiting the activation of TLR4-medicated NF-kB and NLRP3 signaling pathway. J Ethnopharmacol 315:116720 https://doi.org/10.1016/j. jep.2023.116720
  27. Redondo-Castro E, Faust D, Fox S, Baldwin AG, Osborne S, Haley MJ, Karran E, Nuthall H, Atkinson PJ, Dawson LA, Routledge C, Allan SM, Freeman S, Brownlees J, Brough D (2018) Development of a characterised tool kit for the interrogation of NLRP3 inflammasome-dependent responses. Sci Rep 8:5667. https://doi.org/10.1038/s41598-018-24029-3
  28. Lim JO, Kim WI, Pak SW, Lee SJ, Park SH, Shin IS, Kim JC (2023) Toll-like receptor 4 is a key regulator of asthma exacerbation caused by aluminum oxide nanoparticles via regulation of NF-κB phosphorylation. J Hazard Mater 448:130884. https://doi.org/10.1016/j.jhazmat.2023.130884
  29. Bolourani S, Brenner M, Wang P (2021) The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. J Mol Med (Berl) 99:1373-1384. https://doi.org/10.1007/s00109-021-02113-y
  30. Pace E, Ferraro M, Siena L, Melis M, Montalbano AM, Johnson M, Bonsignore MR, Bonsignore G, Gjomarkaj M (2008) Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology. 124:401-411. https://doi.org/10.1016/j. jep. 2023. 116720
  31. Sidletskaya K, Vitkina T, Denisenko Y (2020) The role of toll-like receptors 2 and 4 in the pathogenesis of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 15:1481-1493. https://doi.org/10.2147/COPD. S2491 31
  32. Zaffaroni L, Peri F (2018) Recent advances on Toll-like receptor 4 modulation: new therapeutic perspectives. Future Med Chem 10:461-476. https://doi.org/10.4155/fmc-2017-0172
  33. Becker S, Dailey L, Soukup JM, Silbajoris R, Devlin RB (2005) TLR-2 is involved in airway epithelial cell response to air pollution particles. Toxicol Appl Pharmacol 203:45-52. https://doi.org/10.1016/j. taap. 2004. 07. 007
  34. He M, Ichinose T, Yoshida Y, Arashidani K, Yoshida S, Takano H, Sun G, Shibamoto T (2017) Urban PM2.5 exacerbates allergic inflammation in the murine lung via a TLR2/TLR4/MyD88-signaling pathway. Sci Rep 7:11027. https://doi.org/10.1038/s41598-017-11471-y
  35. Shoenfelt J, Mitkus RJ, Zeisler R, Spatz RO, Powell J, Fenton MJ, Squibb KA, Medvedev AE (2009) Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter. J Leukoc Biol 86:303-312. https://doi.org/10.1189/jlb. 10085 87
  36. Kim JS, Lee B, Hwang IC, Yang YS, Yang MJ, Song CW (2010) An automatic video instillator for intratracheal instillation in the rat. Lab Anim 44:20-24. https://doi.org/10.1258/la. 2009. 009003
  37. Li X, Zhang T, Lv W, Wang H, Chen H, Xu Q, Cai H, Dai J (2022) Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/β-catenin signaling pathway in mice. Ecotoxicol Environ Saf 232:113238. https://doi.org/10.1016/j. ecoenv. 2022. 113238
  38. Cao J, Xu R, Geng Y, Xu S, Guo M (2023) Exposure to polystyrene microplastics triggers lung injury via targeting toll-like receptor 2 and activation of the NF-κB signal in mice. Environ Pollut 320:121068. https://doi.org/10.1016/j. envpol. 2023. 121068
  39. Lee S, Kang KK, Sung SE, Choi JH, Sung M, Seong KY, Lee S, Yang SY, Seo MS, Kim K (2022) Toxicity study and quantitative evaluation of polyethylene microplastics in ICR mice. Polymers (Basel) 14:402. https://doi.org/10.3390/polym 14030 402
  40. Lee S, Kim D, Kang KK, Sung SE, Choi JH, Sung M, Shin CH, Jeon E, Kim D, Kim D, Lee S, Kim HK, Kim K (2023) Toxicity and Biodistribution of Fragmented Polypropylene Microplastics in ICR Mice. Int J Mol Sci 24:8463. https://doi.org/10.3390/ijms241084 63
  41. Woo JW, Seo HJ, Lee JY, Lee I, Jeon K, Kim B, Lee K (2023) Polypropylene nanoplastic exposure leads to lung inflammation through p38-mediated NF-κB pathway due to mitochondrial damage. Part Fibre Toxicol 20:2. https://doi.org/10.1186/s12989-022-00512-8
  42. Geng Y, Zhang Z, Zhou W, Shao X, Li Z, Zhou Y (2023) Individual exposure to microplastics through the inhalation route: comparison of microplastics in inhaled indoor aerosol and exhaled breath air. Environ Sci Technol Lett 10:464-470. https://doi.org/10.1021/acs.estlett.3c00147
  43. Zhu X, Huang W, Fang M, Liao Z, Wang Y, Xu L, Mu Q, Shi C, Lu C, Deng H, Dahlgren R, Shang X (2021) Airborne microplastic concentrations in five megacities of northern and southeast china. Environ Sci Technol 55:12871-12881. https://doi.org/10.1021/acs.est.1c03618
  44. Zhang J, Wang L, Kannan K (2019) Polyethylene Terephthalate and Polycarbonate Microplastics in Pet Food and Feces From the United States. Environ Sci Technol 53:12035-12042. https://doi.org/10.1021/acs.est.9b03912
  45. Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85-96. https://doi.org/10.1021/nn700 256c
  46. Chiu HW, Xia T, Lee YH, Chen CW, Tsai JC, Wang YJ (2015) Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale 7:736-746. https://doi.org/10.1039/c4nr0 5509h
  47. An D, Na J, Song J, Jung J (2021) Size-dependent chronic toxicity of fragmented polyethylene microplastics to Daphnia magna. Chemosphere 271:129591. https://doi.org/10.1016/j.chemo sphere.2021. 129591
  48. Zajac M, Kotynska J, Zambrowski G, Breczko J, Deptula P, Ciesluk M, Zambrzycka M, Swiecicka I, Bucki R, Naumowicz M (2023) Exposure to polystyrene nanoparticles leads to changes in the zeta potential of bacterial cells. Sci Rep 13:9552. https://doi.org/10.1038/s41598-023-36603-5
  49. Canepari S, Padella F, Astolfi ML, Marconi E, Perrino C (2013) Elemental concentration in atmospheric particulate matter: estimation of nanoparticle contribution. Aerosol Air Qual Res 13:1619-1629. https://doi.org/10.4209/aaqr.2013.03.0081
  50. Saleh Y, Antherieu S, Dusautoir R, Alleman LY, Sotty J, De Sousa C, Platel A, Perdrix E, Riffault V, Fronval I, Nesslany F, Canivet L, Garcon G, Lo-Guidice JM (2019) Exposure to atmospheric ultrafine particles induces severe lung inflammatory response and tissue remodeling in mice. Int J Environ Res Public Health 16:1210. https://doi.org/10.3390/ijerph16071210
  51. Jin YJ, Kim JE, Roh YJ, Song HJ, Seol A, Park J, Lim Y, Seo S, Hwang DY (2023) Characterisation of changes in global genes expression in the lung of ICR mice in response to the inflammation and fibrosis induced by polystyrene nanoplastics inhalation. Toxicol Res 39:575-599. https://doi.org/10.1007/s43188-023-00188-y
  52. Shao XR, Wei XQ, Song X, Hao LY, Cai XX, Zhang ZR, Peng Q, Lin YF (2015) Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif 48:465-474. https://doi.org/10.1111/cpr. 12192
  53. Rosales C (2018) Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol 9:113. https://doi.org/10.3389/fphys.2018.00113
  54. Hou F, Xial K, Tang L, Xie L (2021) Diversity of macrophages in lung homeostasis and diseases. Front Immunol 12:753940. https://doi.org/10.3389/fimmu. 2021.753940
  55. Dworski R, Simon HU, Hoskins A, Yousefi S (2011) Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J Allergy Clin Immunol 127:1260-1266. https://doi.org/10.1016/j. jaci.2010.12.1103
  56. Inoue K, Takano H, Yanagisawa R, Sakurai M, Ichinose T, Sadakane K, Yoshikawa T (2005) Effects of nano particles on antigenrelated airway inflammation in mice. Respir Res 6:106. https://doi.org/10.1186/1465-9921-6-106
  57. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313-326. https://doi.org/10.1089/jir.2008.0027
  58. Conti P, Digioacchino M (2001) MCP-1 and RANTES are mediators of acute and chronic inflammation. Allergy Asthma Proc 22:133-137. https://doi.org/10.2500/10885 41017 78148 737
  59. Saber AT, Jacobsen NR, Bornholdt J, Kjaer SL, Dybdahl M, Risom L, Loft S, Vogel U, Wallin H (2006) Cytokine expression in mice exposed to diesel exhaust particles by inhalation. Role of tumor necrosis factor. Part Fibre Toxicol 3:4. https://doi.org/10.1186/1743-8977-3-4
  60. Haelens A, Wuyts A, Proost P, Struyf S, Opdenakker G, Damme JV (1996) Leukocyte migration and activation by murine chemokines. Immunobiology 195:499-521. https://doi.org/10.1016/s0171-2985(96)80019-2
  61. Driscoll KE (2000) TNFalpha and MIP-2: role in particle-induced inflammation and regulation by oxidative stress. Toxicol Lett 112-113:177-183. https://doi.org/10.1016/s0378-4274(99)00282-9
  62. Rao KMK, Ma JY, Meighan T, Barger MW, Pack D, Vallyathan V (2005) Time course of gene expression of inflammatory mediators in rat lung after diesel exhaust particle exposure. Environ Health Perspect 113:612-617. https://doi.org/10.1289/ehp.7696
  63. Danielsen PH, Bendtsen KM, Knudsen KB, Poulsen SS, Stoeger T, Vogel U (2021) Nanomaterial-and shape-dependency of TLR2 and TLR4 mediated signaling following pulmonary exposure to carbonaceous nanomaterials in mice. Part Fibre Toxicol 18:40. https://doi.org/10.1186/s12989-021-00432-z
  64. Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145-151. https://doi.org/10.1016/j.cyto.2008.01.006
  65. Erridge C (2010) Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol 87:989-999. https://doi.org/10.1189/jlb.1209775
  66. Colleselli K, Stierschneider A, Wiesner C (2023) An update on toll-like receptor 2, its function and dimerization in pro-and antiinflammatory processes. Int J Mol Sci 24:12464. https://doi.org/10.3390/ijms241512464
  67. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 97:13766-13771. https://doi.org/10.1073/pnas. 250476497
  68. Underhill DM, Ozinsky A (2002) Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol 14:103-110. https://doi.org/10.1016/s0952-7915(01)00304-1