DOI QR코드

DOI QR Code

Protective effect of cilostazol on vascular injury in rats with acute ischemic stroke complicated with chronic renal failure

  • Ru Sun (Department of Neurology, the First People's Hospital of Huzhou, First affiliated Hospital of Huzhou University) ;
  • Qun Gu (Department of Neurology, the First People's Hospital of Huzhou, First affiliated Hospital of Huzhou University) ;
  • Xufeng Zhang (Department of Neurology, the First People's Hospital of Huzhou, First affiliated Hospital of Huzhou University) ;
  • Ruiqi Zeng (Department of Neurology, the First People's Hospital of Huzhou, First affiliated Hospital of Huzhou University) ;
  • Dan Chen (Department of Neurology, the First People's Hospital of Huzhou, First affiliated Hospital of Huzhou University) ;
  • Jingjing Yao (Department of Neurology, the First People's Hospital of Huzhou, First affiliated Hospital of Huzhou University) ;
  • Jingjing Min (Department of Neurology, the First People's Hospital of Huzhou, First affiliated Hospital of Huzhou University)
  • Received : 2023.03.10
  • Accepted : 2023.11.05
  • Published : 2024.04.15

Abstract

Chronic renal failure (CRF) resulting in vascular calcification, which does damage to blood vessels and endothelium, is an independent risk factor for stroke. It has been reported that cilostazol has a protective effect on the focal cerebral ischemic infarct. However, its impact on vascular injury in CRF combined stroke and its molecular protection mechanism have not been investigated. In this study, we carried out the effect of cilostazol on CRF combined stroke rats, and the results confirmed that it improved the neurobehavior, renal function as well as pathologic changes in both the kidney and brain. In addition, the inflammation and oxidative stress factors in the kidney and brain were suppressed. Moreover, the rates of brain edema and infarction were decreased. The injured brain-blood barrier (BBB) was recovered with less Evans blue extravasation and more expressions of zonula occludens-1(ZO-1) and occludin. More cerebral blood flow (CBF) in the ipsilateral hemisphere and more expression of CD31 and vascular endothelial growth factor (VEGF) in brain and kidney were found in the cilostazol group. Furthermore, cell apoptosis and cell autophagy became less, on the contrary, proteins of vascular endothelial growth factor receptor 2 (VEGFR2) after the cilostazol treatment were increased. More importantly, this protective effect is related to the pathway of Janus Kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), mammalian target of rapamycin (mTOR), and the hypoxia inducible factor-1α (HIF-1α). In conclusion, our results confirmed that cilostazol exerted a protective effect on the brain and kidney function, specifically in vascular injury, oxidative stress, cell apoptosis, cell autophagy, and inflammation response in CRF combined with stroke rats which were related to the upregulation of JAK/STAT3/mTOR signal pathway.

Keywords

Acknowledgement

This study was supported by Huzhou Municipal Science and Technology Bureau Public Welfare Application Research Project under Grant Numbers (2021GZB12, 2021GYB54, 2019GZ40), Zhejiang Medicine and Health Science and Technology Project under Grant Numbers (2020RC118, 2021KY1097).

References

  1. Ammirati AL (2020) Chronic kidney disease. Rev Assoc Med Brasile 66:s03-s09. https://doi.org/10.1590/1806-9282.66.S1.3
  2. Chillon JM, Brazier F, Bouquet P, Massy ZA (2014) Neurological disorders in a murine model of chronic renal failure. Toxins 6:180-193. https://doi.org/10.3390/toxins6010180
  3. Chelluboina B, Vemuganti R (2019) Chronic kidney disease in the pathogenesis of acute ischemic stroke. J Cerebral Blood Flow Metab Off J Int Soc Cerebral Blood Flow Metab 39:1893-1905. https://doi.org/10.1177/0271678x19866733
  4. Gadalean F, Simu M, Parv F, Vorovenci R, Tudor R, Schiller A et al (2017) The impact of acute kidney injury on in-hospital mortality in acute ischemic stroke patients undergoing intravenous thrombolysis. PLoS One 12:e0185589. https://doi.org/10.1371/journal.pone.0185589
  5. Ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C et al (2016) Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail 18:588-598. https://doi.org/10.1002/ejhf.497
  6. Eldehni MT, Odudu A, McIntyre CW (2019) Brain white matter microstructure in end-stage kidney disease, cognitive impairment, and circulatory stress. Hemodial Int Symp Home Hemodial 23:356-365. https://doi.org/10.1111/hdi.12754
  7. Wyld M, Webster AC (2021) Chronic kidney disease is a risk factor for stroke. J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc 30:105730. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105730
  8. Kim YR, Kim HN, Hong KW, Shin HK, Choi BT (2016) Antidepressant effects of phosphodiesterase 3 inhibitor cilostazol in chronic mild stress-treated mice after ischemic stroke. Psychopharmacology 233:1055-1066. https://doi.org/10.1007/s00213-015-4185-6
  9. Toda Y, Katsura K, Saito M, Inaba T, Sakurazawa M, Katayama Y (2014) The effect of cilostazol and aspirin pre-treatment against subsequent transient focal cerebral ischemia in rat. Neurol Res 36:1011-1019. https://doi.org/10.1179/1743132814y.0000000389
  10. El-Abhar H, Abd El Fattah MA, Wadie W, El-Tanbouly DM (2018) Cilostazol disrupts TLR-4, Akt/GSK-3β/CREB, and IL-6/JAK-2/STAT-3/SOCS-3 crosstalk in a rat model of Huntington's disease. PLoS One 13:e0203837. https://doi.org/10.1371/journal.pone.0203837
  11. Li J, Xiang X, Gong X, Shi Y, Yang J, Xu Z (2017) Cilostazol protects mice against myocardium ischemic/reperfusion injury by activating a PPARγ/JAK2/STAT3 pathway. Biomed Pharmacother Biomed Pharmacother 94:995-1001. https://doi.org/10.1016/j.biopha.2017.07.143
  12. Ghosh SS, Krieg RJ, Sica DA, Wang R, Fakhry I, Gehr T (2009) Cardiac hypertrophy in neonatal nephrectomized rats: the role of the sympathetic nervous system. Pediatric Nephrol (Berlin) 24:367-377. https://doi.org/10.1007/s00467-008-0978-8
  13. Ghosh SS, Massey HD, Krieg R, Fazelbhoy ZA, Ghosh S, Sica DA et al (2009) Curcumin ameliorates renal failure in 5/6 nephrectomized rats: role of inflammation. Am J Physiol Renal Physiol 296:F1146-F1157. https://doi.org/10.1152/ajprenal.90732.2008
  14. Deng Y, Shi C, Gu Y, Yang N, Xu M, Xu T et al (2020) A study of optimal concentration range and time window of sevoflurane preconditioning for brain protection in MCAO rats. BMC Anesthesiol 20:78. https://doi.org/10.1186/s12871-020-00984-1
  15. Chancharoenthana W, Leelahavanichkul A, Taratummarat S, Wongphom J, Tiranathanagul K, Eiam-Ong S (2017) Cilostazol attenuates intimal hyperplasia in a mouse model of chronic kidney disease. PLoS One 12:e0187872. https://doi.org/10.1371/journal.pone.0187872
  16. Lee WC, Chen HC, Wang CY, Lin PY, Ou TT, Chen CC et al (2010) Cilostazol ameliorates nephropathy in type 1 diabetic rats involving improvement in oxidative stress and regulation of TGFBeta and NF-kappaB. Biosci Biotechnol Biochem 74:1355-1361. https://doi.org/10.1271/bbb.90938
  17. Drozdz D, Kwinta P, Sztefko K, Kordon Z, Drozdz T, Latka M et al (2016) Oxidative stress biomarkers and left ventricular hypertrophy in children with chronic kidney disease. Oxid Med Cell Longev 2016:7520231. https://doi.org/10.1155/2016/7520231
  18. Chien SJ, Lin IC, Hsu CN, Lo MH, Tain YL (2015) Homocysteine and arginine-to-asymmetric dimethylarginine ratio associated with blood pressure abnormalities in children with early chronic kidney disease. Circ J 79:2031-2037. https://doi.org/10.1253/circj.CJ-15-0412
  19. Mihai S, Codrici E, Popescu ID, Enciu AM, Rusu E, Zilisteanu D et al (2016) Proteomic biomarkers panel: new insights in chronic kidney disease. Dis Markers 2016:3185232. https://doi.org/10.1155/2016/3185232
  20. Saeed ZM, Khattab MI, Khorshid NE, Salem AE (2022) Ellagic acid and cilostazol ameliorate amikacin-induced nephrotoxicity in rats by downregulating oxidative stress, inflammation, and apoptosis. PLoS One 17:e0271591. https://doi.org/10.1371/journal.pone.0271591
  21. Jabbari B, Vaziri ND (2018) The nature, consequences, and management of neurological disorders in chronic kidney disease. Hemodial Int Symp Home Hemodial 22:150-160. https://doi.org/10.1111/hdi.12587
  22. Kolachalama VB, Shashar M, Alousi F, Shivanna S, Rijal K, Belghasem ME et al (2018) Uremic solute-aryl hydrocarbon receptortissue factor axis associates with thrombosis after vascular injury in humans. J Am Soc Nephrol 29:1063-1072. https://doi.org/10.1681/asn.2017080929
  23. Jing W, Jabbari B, Vaziri ND (2018) Uremia induces upregulation of cerebral tissue oxidative/inflammatory cascade, down-regulation of Nrf2 pathway and disruption of blood brain barrier. Am J Transl Res 10:2137-2147
  24. Assem M, Lando M, Grissi M, Kamel S, Massy ZA, Chillon JM et al (2018) The impact of uremic toxins on cerebrovascular and cognitive disorders. Toxins 10:1. https://doi.org/10.3390/toxins10070303
  25. von Heesen M, Muller S, Keppler U, Strowitzki MJ, Scheuer C, Schilling MK et al (2015) Preconditioning by cilostazol protects against cold hepatic ischemia-reperfusion injury. Ann Transpl 20:160-168. https://doi.org/10.12659/aot.893031
  26. Horai S, Nakagawa S, Tanaka K, Morofuji Y, Couraud PO, Deli MA et al (2013) Cilostazol strengthens barrier integrity in brain endothelial cells. Cell Mol Neurobiol 33:291-307. https://doi.org/10.1007/s10571-012-9896-1
  27. Li J, Xiang X, Xu H, Shi Y (2019) Cilostazol promotes angiogenesis and increases cell proliferation after myocardial ischemia-reperfusion injury through a cAMP-dependent mechanism. Cardiovasc Eng Technol 10:638-647. https://doi.org/10.1007/s13239-019-00435-0
  28. Jiang X, Guo CX, Zeng XJ, Li HH, Chen BX, Du FH (2015) A soluble receptor for advanced glycation end-products inhibits myocardial apoptosis induced by ischemia/reperfusion via the JAK2/STAT3 pathway. Apoptosis Int J Programmed Cell Death 20:1033-1047. https://doi.org/10.1007/s10495-015-1130-4
  29. Zhang Z, Pan Y, Zhao Y, Ren M, Li Y, Lu G et al (2021) Delphinidin modulates JAK/STAT3 and MAPKinase signaling to induce apoptosis in HCT116 cells. Environ Toxicol 36:1557-1566. https://doi.org/10.1002/tox.23152