DOI QR코드

DOI QR Code

Stress and wear distribution characteristics of cutterhead for EPB shield tunneling in cobble-boulders

  • Zhiyong Yang (School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing) ;
  • Xiaokang Shao (School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing) ;
  • Hao Han (School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing) ;
  • Yusheng Jiang (School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing) ;
  • Jili Feng (School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing) ;
  • Wei Wang (China Railway Electrification Bureau Group Co., Ltd.) ;
  • Zhengyang Sun (Beijing Urban Construction Group Co., Ltd.)
  • 투고 : 2023.05.29
  • 심사 : 2024.03.21
  • 발행 : 2024.04.10

초록

Owing to the high strength and abrasive characteristics of cobble-boulders, cutters are easily worn and damaged during shield tunneling, making construction inefficient. In the present work, the stress on the ripper and scraper on the cutterhead was analyzed by the PFC3D-FLAC3D coupling model of shield tunneling to get insight into the performance of the cutterhead for cutting underground cobble and boulders. The numerical calculation results revealed that the increase in trajectory radius leads to a rising stress on the cutters, and the stress on the front cutting surface is greater than that on the back of the cutters. Moreover, the correlation between cutter wear and stress is revealed based on field measurement data. The distribution of the cutter stress is consistent with the cutter wear and breakage characteristics in actual construction, in which more extensive cutter stress is exhibited, extreme cutter wear appears, and more cutter breakage occurs. Finally, the relationship between the cutterhead opening area's layout and cutter wear distribution was investigated, indicating that the cutter wear extent is the most severe in the region where the radial opening ratio dropped sharply.

키워드

과제정보

This research is supported by the National Natural Science Foundation of China (Grant No. U1261212), and the support is gratefully acknowledged.

참고문헌

  1. Altan, E., Uysal, A. and C aliskan, O. (2018), "Investigation into the effectiveness of cutting parameters on wear regions of the flank wear curve and associated cutting tool life improvement", Int. J. Mater. Prod. Tec., 57(1-3), 54-70. https://doi.org/10.1504/IJMPT.2018.092931.
  2. Amoun, S., Sharifzadeh, M., Shahriar, K., Rostami, J. and Azali, S.T. (2017), "Evaluation of tool wear in EPB tunneling of Tehran Metro, Line 7 Expansion", Tunn. Undergr. Sp. Tech., 61, 233-246. https://doi.org/10.1016/j.tust.2016.11.001.
  3. Bakar, M.A., Majeed, Y., Rashid, M. and Ahmed, F. (2021), "Wear mechanisms of LCPC rock abrasivity test impellers of materials equivalent to TBM cutter head face tools", Tunn. Undergr. Sp. Tech., 116, 104122. https://doi.org/10.1016/j.tust.2021.104122.
  4. Cai, M., Kaiser, P., Morioka, H., Minami, M., Maejima, T., Tasaka, Y. and Kurose, H. (2007), "FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations", Int. J. Rock Mech. Min. Sci., 44(4), 550-564. https://doi.org/10.1016/j.ijrmms.2006.09.01.
  5. Castro-Filgueira, U., Alejano, L., Arzua, J. and Ivars, D.M. (2017), Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks. In: ISRM European Rock Mechanics Symposium-EUROCK 2017. OnePetro,
  6. Cho, N.a., Martin, C. and Sego, D. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.
  7. Choi, S.O. and Lee, S.J. (2015), "Three-dimensional numerical analysis of the rock-cutting behavior of a disc cutter using particle flow code", KSCE J. Civ. Eng., 19, 1129-1138. https://doi.org/10.1007/s12205-013-0622-4.
  8. Cui, S., Tan, Y. and Lu, Y. (2020), "Algorithm for generation of 3D polyhedrons for simulation of rock particles by DEM and its application to tunneling in boulder-soil matrix", Tunn. Undergr. Sp. Technol., 106, 103588. https://doi.org/10.1016/j.tust.2020.103588.
  9. Ding, P., Shi, C., Tao, L., Liu, Z. and Zhang, T. (2023), "Research on seismic analysis methods of large and complex underground pipe structures in hard rock sites" , Tunn. Undergr. Sp. Tech., 135, 105035.
  10. Gharahbagh, E.A., Qiu, T. and Rostami, J. (2013), "Evaluation of granular soil abrasivity for wear on cutting tools in excavation and tunneling equipment", J Geotech Geoenviron, 139(10), 1718-1726. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000897.
  11. Grasmick, J. and Mooney, M. (2021), "A probabilistic geostatistics-based approach to tunnel boring machine cutter tool wear and cutterhead clogging prediction", J Geotech Geoenviron, 147(12), 05021014. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002701.
  12. Guo, J., Xu, G., Jing, H. and Kuang, T. (2013), "Fast determination of meso-level mechanical parameters of PFC models", Int. J. Min. Sci. Technol., 23(1), 157-162. https://doi.org/10.1016/j.ijmst.2013.03.007.
  13. Han, M., Cai, Z., Qu, C. and Jin, L. (2017), "Dynamic numerical simulation of cutterhead loads in TBM tunnelling", Tunn. Undergr. Sp. Tech., 70, 286-298. https://doi.org/10.1016/j.tust.2017.08.028.
  14. Hu, X., He, C., Walton, G. and Fang, Y. (2021), "Face failure in cobble-rich soil: Numerical and experimental approaches on 1 g EPB reduced scale model", Soils Found., 61(6), 1500-1528. https://doi.org/10.1016/j.sandf.2021.08.008.
  15. Jiang, B., Zhao, G.F., Gong, Q. and Zhao, X.B. (2021), "Three-dimensional coupled numerical modelling of lab-level full-scale TBM disc cutting tests", Tunn. Undergr. Sp. Tech., 114, 103997. https://doi.org/10.1016/j.tust.2021.103997.
  16. Jiang, H., Zhu, J., Zhang, X., Zhang, J., Li, H. and Meng, L. (2022), "Wear mechanism and life prediction of the ripper in a 9-m-diameter shield machine tunneling project of the Beijing new airport line in a sand-pebble stratum", Deep Undergr. Sci. Eng., 1(1), 65-76. https://doi.org/10.1002/dug2.12010
  17. Kim, Y., Hong, J., Shin, J. and Kim, B. (2022), "Shield TBM disc cutter replacement and wear rate prediction using machine learning techniques", Geomech. Eng., 29(3), 249-258. https://doi.org/10.12989/gae.2022.29.3.249.
  18. Kwak, N.S. and Ko, T.Y. (2022), "Machine learning-based regression analysis for estimating Cerchar abrasivity index", Geomech. Eng., 29(3), 219-228. https://doi.org/10.12989/gae.2022.29.3.219.
  19. Labra, C., Rojek, J. and Onate, E. (2017), "Discrete/finite element modelling of rock cutting with a TBM disc cutter", Rock Mech. Rock Eng., 50, 621-638. https://doi.org/10.1007/s00603-016-1133-7.
  20. Li, G., Wang, W., Jing, Z., Zuo, L., Wang, F. and Wei, Z. (2018), "Mechanism and numerical analysis of cutting rock and soil by TBM cutting tools", Tunn. Undergr. Sp. Tech., 81, 428-437. https://doi.org/10.1016/j.tust.2018.08.015.
  21. Li, X., Li, X. and Yuan, D. (2017), "Application of an interval wear analysis method to cutting tools used in tunneling shields in soft ground", Wear, 392, 21-28. https://doi.org/10.1016/j.wear.2017.09.010.
  22. Liu, W., Yang, F., Zhu, X., Zhang, Y. and Gong, S. (2022), "Rock cutting behavior of worn specially-shaped PDC cutter in crystalline rock", Geomech. Eng., 31(3), 249-263. https://doi.org/10.12989/gae.2022.31.3.249.
  23. Luo, X., Cheng, K., Holt, R. and Liu, X. (2005), "Modeling flank wear of carbide tool insert in metal cutting", Wear, 259(7-12), 1235-1240. https://doi.org/10.1016/j.wear.2005.02.044.
  24. Mohammadi, S., Firuzi, M. and Asghari Kaljahi, E. (2016), "Geological-geotechnical risk in the use of EPB-TBM, case study: Tabriz Metro, Iran", Bull. Eng. Geol. Environ., 75, 1571-1583. https://doi.org/10.1007/s10064-015-0797-7.
  25. Mosleh, M., Gharahbagh, E.A. and Rostami, J. (2013), "Effects of relative hardness and moisture on tool wear in soil excavation operations", Wear, 302(1-2), 1555-1559. https://doi.org/10.1016/j.wear.2012.11.041.
  26. Qu, T., Wang, S., Fu, J., Hu, Q. and Zhang, X. (2019), "Numerical examination of EPB shield tunneling-induced responses at various discharge ratios", J. Perform. Constr. Fac., 33(3), 04019035.
  27. Tao, L., Ding, P., Lin, H., Wang, H., Kou, W., Shi, C., Li, S. and Wu, S. (2021), "Three-dimensional seismic performance analysis of large and complex underground pipe trench structure", Soil Dyn. Earthq. Eng., 150, 106904.
  28. Toubhans, B., Fromentin, G., Viprey, F., Karaouni, H. and Dorlin, T. (2020), "Machinability of inconel 718 during turning: Cutting force model considering tool wear, influence on surface integrity", J. Mater. Process. Tech., 285, 116809.
  29. Xu, H., Geng, Q., Sun, Z. and Qi, Z. (2021), "Full-scale granite cutting experiments using tunnel boring machine disc cutters at different free-face conditions", Tunn. Undergr. Sp. Tech., 108, 103719.
  30. Xue, Y., Zhou, J., Liu, C., Shadabfar, M. and Zhang, J. (2021), "Rock fragmentation induced by a TBM disc-cutter considering the effects of joints: A numerical simulation by DEM", Comput. Geotech., 136, 104230.
  31. Yang, Z., Jiang, Y. and Zhang, J. (2018), "Radial opening ratio of EPB TBM cutterheads", Chinese J. Geotech. Eng., 40(12), 2312-2317. https://doi.org/10.11779/CJGE201812020.
  32. Yang, Z., Sun, Z., Fang, K., Jiang, Y., Gao, H. and Bai, Z. (2021), "Cutting tool wear model for tunnel boring machine tunneling in heterogeneous grounds", Bull. Eng. Geol. Environ., 80(7), 5709-5723. https://doi.org/10.1007/s10064-021-02298-z
  33. Zhang, Z., Zhang, K., Dong, W. and Zhang, B. (2020), "Study of rock-cutting process by disc cutters in mixed ground based on three-dimensional particle flow model", Rock Mech. Rock Eng., 53, 3485-3506. https://doi.org/10.1007/s00603-020-02118-y
  34. Zhu, H., Panpan, C., Xiaoying, Z., Yuanhai, L. and Peinan, L. (2020), "Assessment and structural improvement on the performance of soil chamber system of EPB shield assisted with DEM modeling", Tunn. Undergr. Sp. Tech., 96, 103092.
  35. Zhu, X., Liu, W. and Lv, Y. (2017), "The investigation of rock cutting simulation based on discrete element method", Geomech. Eng., 13(6), 977-995. https://doi.org/10.12989/gae.2017.13.6.977.