DOI QR코드

DOI QR Code

A gene expression programming-based model to predict water inflow into tunnels

  • Arsalan Mahmoodzadeh (IRO, Civil Engineering Department, University of Halabja) ;
  • Hawkar Hashim Ibrahim (Department of Civil Engineering, College of Engineering, Salahaddin University-Erbil) ;
  • Laith R. Flaih (Department of Computer Science, Cihan University-Erbil) ;
  • Abed Alanazi (Department of Computer Science, College of Computer Engineering and Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University) ;
  • Abdullah Alqahtani (Department of Computer Science, College of Computer Engineering and Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University) ;
  • Shtwai Alsubai (Department of Computer Science, College of Computer Engineering and Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University) ;
  • Nabil Ben Kahla (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Adil Hussein Mohammed (Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil)
  • 투고 : 2022.10.16
  • 심사 : 2024.03.18
  • 발행 : 2024.04.10

초록

Water ingress poses a common and intricate geological hazard with profound implications for tunnel construction's speed and safety. The project's success hinges significantly on the precision of estimating water inflow during excavation, a critical factor in early-stage decision-making during conception and design. This article introduces an optimized model employing the gene expression programming (GEP) approach to forecast tunnel water inflow. The GEP model was refined by developing an equation that best aligns with predictive outcomes. The equation's outputs were compared with measured data and assessed against practical scenarios to validate its potential applicability in calculating tunnel water input. The optimized GEP model excelled in forecasting tunnel water inflow, outperforming alternative machine learning algorithms like SVR, GPR, DT, and KNN. This positions the GEP model as a leading choice for accurate and superior predictions. A state-of-the-art machine learning-based graphical user interface (GUI) was innovatively crafted for predicting and visualizing tunnel water inflow. This cutting-edge tool leverages ML algorithms, marking a substantial advancement in tunneling prediction technologies, providing accuracy and accessibility in water inflow projections.

키워드

과제정보

This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2024/R/1445). The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/130/44.

참고문헌

  1. Apaydin, A., Korkmaz, N. and Ciftci, D. (2019), "Water inflow into tunnels: Assessment of the Gerede water transmission tunnel (Turkey) with complex hydrogeology", Q. J. Eng. Geol. Hydrogeol., 52(3), 346-359. https://doi.org/10.1144/qjegh2017-125.
  2. Berkowitz, B. (2002), "Characterizing flow and transport in fractured geological media: A review", Adv. Water Resour., 25(8-12), 861-884. https://doi.org/10.1016/S0309-1708(02)00042-8.
  3. Cheng, P., Zhao, L., Li, Q., Li, L. and Zhang, S. (2019), "Water inflow prediction and grouting design for tunnel considering nonlinear hydraulic conductivity", KSCE J. Civil Eng., 23(9), 4132-4140. https://doi.org/10.1007/s12205-019-0306-9.
  4. Cui, W., Caracoglia, L., Zhao, L. and Ge, Y. (2023a), "Examination of occurrence probability of vortex-induced vibration of long-span bridge decks by Fokker-Planck-Kolmogorov equation", Struct. Saf., 105, 102369. https://doi.org/10.1016/j.strusafe.2023.102369.
  5. Cui, W., Zhao, L. and Ge, Y. (2023b), "Wind-induced buffeting cibration of long-span bridge considering geometric and aerodynamic nonlinearity based on reduced-order modeling", J. Struct. Eng., 149(11). https://doi.org/10.1061/JSENDH.STENG11543.
  6. Cui, W., Zhao, L., Ge, Y. and Xu, K. (2024), "A generalized van der Pol nonlinear model of vortex-induced vibrations of bridge decks with multistability", Nonlinear Dynam., 112(1), 259-272. https://doi.org/10.1007/s11071-023-09047-9.
  7. Dai, Z., Li, X. and Lan, B. (2023a), "Three-dimensional modeling of Tsunami waves triggered by submarine landslides based on the smoothed particle hydrodynamics method", J. Mar. Sci. Eng., 11(10), 2015. https://doi.org/10.3390/jmse11102015.
  8. Faradonbeh, R.S., Armaghani, D.J., Monjezi, M. and Mohamad, E.T. (2016), "Genetic programming and gene expression programming for flyrock assessment due to mine blasting", Int. J. Rock Mech. Min. Sci., 88, 254-264. https://doi.org/10.1016/j.ijrmms.2016.07.028.
  9. Farhadian, H. and Katibeh, H. (2017), "New empirical model to evaluate groundwater flow into circular tunnel using multiple regression analysis", Int. J. Min. Sci. Technol., 27(3), 415-421. https://doi.org/10.1016/j.ijmst.2017.03.005.
  10. Farhadian, H. andNikvar-Hassani, A. (2019), "Water flow into tunnels in discontinuous rock: a short critical review of the analytical solution of the art", Bull. Eng. Geol. Environ., 78(5), 3833-3849. https://doi.org/10.1007/s10064-018-1348-9.
  11. Ferreira, C. (2002), "Gene Expression Programming in Problem Solving", In Soft Computing and Industry, 635-653. Springer London. https://doi.org/10.1007/978-1-4471-0123-9_54.
  12. Ferreira, C. (2006), "Gene Expression Programming", 21, Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-32849-1.
  13. Golian, M., Teshnizi, E.S. and Nakhaei, M. (2018), "Prediction of water inflow to mechanized tunnels during tunnel-boring-machine advance using numerical simulation", Hydrogeol. J., 26(8), 2827-2851. https://doi.org/10.1007/s10040-018-1835-x.
  14. Ho, W. and Ma, X. (2018), "The state-of-the-art integrations and applications of the analytic hierarchy process", Eur. J. Operat. Res., 267(2), 399-414. https://doi.org/10.1016/j.ejor.2017.09.007.
  15. Holmoy, K.H. and Nilsen, B. (2014), "Significance of geological parameters for predicting water inflow in hard rock tunnels", Rock Mech. Rock Eng., 47(3), 853-868. https://doi.org/10.1007/s00603-013-0384-9.
  16. Hwang, J.H. and Lu, C.C. (2007), "A semi-analytical method for analyzing the tunnel water inflow", Tunn. Undergr. Sp. Tech., 22(1), 39-46. https://doi.org/10.1016/j.tust.2006.03.003.
  17. Jin, X., Li, Y., Luo, Y. and Liu, H. (2016), "Prediction of city tunnel water inflow and its influence on overlain lakes in karst valley", Environ. Earth Sci., 75(16), 1162. https://doi.org/10.1007/s12665-016-5949-y.
  18. Li, L., Lei, T., Li, S., Zhang, Q., Xu, Z., Shi, S. and Zhou, Z. (2015), "Risk assessment of water inrush in karst tunnels and software development", Arabian J. Geosci., 8(4), 1843-1854. https://doi.org/10.1007/s12517-014-1365-3.
  19. Li, S., He, P., Li, L., Shi, S., Zhang, Q., Zhang, J. and Hu, J. (2017), "Gaussian process model of water inflow prediction in tunnel construction and its engineering applications", Tunn. Undergr. Sp. Tech., 69, 155-161. https://doi.org/10.1016/j.tust.2017.06.018.
  20. Li, S., Zhou, Z., Li, L., Xu, Z., Zhang, Q. and Shi, S. (2013), "Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system", Tunn. Undergr. Sp. Tech., 38, 50-58. https://doi.org/10.1016/j.tust.2013.05.001.
  21. Liu, W., Liang, J. and Xu, T. (2023), "Tunnelling-induced ground deformation subjected to the behavior of tail grouting materials", Tunn. Undergr. Sp. Tech., 140, 105253. https://doi.org/10.1016/j.tust.2023.105253.
  22. Mahmoodzadeh, A., Mohammadi, M., Noori, K.M.G., Khishe, M., Ibrahim, H.H., Ali, H.F.H. and Abdulhamid, S.N. (2021), "Presenting the best prediction model of water inflow into drill and blast tunnels among several machine learning techniques", Automat. Constr., 127, 103719. https://doi.org/10.1016/j.autcon.2021.103719.
  23. Mansouri, I., Hu, J. and Kisi, O. (2016), "Novel predictive model of the debonding strength for masonry members retrofitted with FRP", Appl. Sci., 6(11), 337. https://doi.org/10.3390/app6110337.
  24. Su, K., Zhou, Y., Wu, H., Shi, C. and Zhou, L. (2017), "An analytical method for groundwater inflow into a drained circular tunnel", Groundwater, 55(5), 712-721. https://doi.org/10.1111/gwat.12513.
  25. Shi, M., Hu, W., Li, M., Zhang, J., Song, X. and Sun, W. (2023), "Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine", Mech. Syst. Signal Pr., 188, 110022. https://doi.org/10.1016/j.ymssp.2022.110022.
  26. Wang, Y., Yang, W., Li, M. and Liu, X. (2012), "Risk assessment of floor water inrush in coal mines based on secondary fuzzy comprehensive evaluation", Int. J. Rock Mech. Min. Sci., 52, 50-55. https://doi.org/10.1016/j.ijrmms.2012.03.006.
  27. Xie, H., Jiang, C., He, J. and Han, H. (2019), "Analytical solution for the steady-state Karst water inflow into a tunnel", Geofluids, 2019, 1-9. https://doi.org/10.1155/2019/1756856.
  28. Yao, B., Bai, H. and Zhang, B. (2012), "Numerical simulation on the risk of roof water inrush in Wuyang Coal Mine", Int. J. Min. Sci. Technol., 22(2), 273-277. https://doi.org/10.1016/j.ijmst.2012.03.006
  29. Yin, H., Wu, Q., Yin, S., Dong, S., Dai, Z. and Soltanian, M.R. (2023). "Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest", J. Hydrology, 616, 128813. https://doi.org/10.1016/j.jhydrol.2022.128813.
  30. Zhao, N., Li, D.Q., Gu, S.X. and Du, W. (2024), "Analytical fragility relation for buried cast iron pipelines with lead-caulked joints based on machine learning algorithms", Earthq. Spectra, 40(1), 566-583. https://doi.org/10.1177/87552930231209195.