Acknowledgement
This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2024/R/1445). The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/130/44.
References
- Apaydin, A., Korkmaz, N. and Ciftci, D. (2019), "Water inflow into tunnels: Assessment of the Gerede water transmission tunnel (Turkey) with complex hydrogeology", Q. J. Eng. Geol. Hydrogeol., 52(3), 346-359. https://doi.org/10.1144/qjegh2017-125.
- Berkowitz, B. (2002), "Characterizing flow and transport in fractured geological media: A review", Adv. Water Resour., 25(8-12), 861-884. https://doi.org/10.1016/S0309-1708(02)00042-8.
- Cheng, P., Zhao, L., Li, Q., Li, L. and Zhang, S. (2019), "Water inflow prediction and grouting design for tunnel considering nonlinear hydraulic conductivity", KSCE J. Civil Eng., 23(9), 4132-4140. https://doi.org/10.1007/s12205-019-0306-9.
- Cui, W., Caracoglia, L., Zhao, L. and Ge, Y. (2023a), "Examination of occurrence probability of vortex-induced vibration of long-span bridge decks by Fokker-Planck-Kolmogorov equation", Struct. Saf., 105, 102369. https://doi.org/10.1016/j.strusafe.2023.102369.
- Cui, W., Zhao, L. and Ge, Y. (2023b), "Wind-induced buffeting cibration of long-span bridge considering geometric and aerodynamic nonlinearity based on reduced-order modeling", J. Struct. Eng., 149(11). https://doi.org/10.1061/JSENDH.STENG11543.
- Cui, W., Zhao, L., Ge, Y. and Xu, K. (2024), "A generalized van der Pol nonlinear model of vortex-induced vibrations of bridge decks with multistability", Nonlinear Dynam., 112(1), 259-272. https://doi.org/10.1007/s11071-023-09047-9.
- Dai, Z., Li, X. and Lan, B. (2023a), "Three-dimensional modeling of Tsunami waves triggered by submarine landslides based on the smoothed particle hydrodynamics method", J. Mar. Sci. Eng., 11(10), 2015. https://doi.org/10.3390/jmse11102015.
- Faradonbeh, R.S., Armaghani, D.J., Monjezi, M. and Mohamad, E.T. (2016), "Genetic programming and gene expression programming for flyrock assessment due to mine blasting", Int. J. Rock Mech. Min. Sci., 88, 254-264. https://doi.org/10.1016/j.ijrmms.2016.07.028.
- Farhadian, H. and Katibeh, H. (2017), "New empirical model to evaluate groundwater flow into circular tunnel using multiple regression analysis", Int. J. Min. Sci. Technol., 27(3), 415-421. https://doi.org/10.1016/j.ijmst.2017.03.005.
- Farhadian, H. andNikvar-Hassani, A. (2019), "Water flow into tunnels in discontinuous rock: a short critical review of the analytical solution of the art", Bull. Eng. Geol. Environ., 78(5), 3833-3849. https://doi.org/10.1007/s10064-018-1348-9.
- Ferreira, C. (2002), "Gene Expression Programming in Problem Solving", In Soft Computing and Industry, 635-653. Springer London. https://doi.org/10.1007/978-1-4471-0123-9_54.
- Ferreira, C. (2006), "Gene Expression Programming", 21, Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-32849-1.
- Golian, M., Teshnizi, E.S. and Nakhaei, M. (2018), "Prediction of water inflow to mechanized tunnels during tunnel-boring-machine advance using numerical simulation", Hydrogeol. J., 26(8), 2827-2851. https://doi.org/10.1007/s10040-018-1835-x.
- Ho, W. and Ma, X. (2018), "The state-of-the-art integrations and applications of the analytic hierarchy process", Eur. J. Operat. Res., 267(2), 399-414. https://doi.org/10.1016/j.ejor.2017.09.007.
- Holmoy, K.H. and Nilsen, B. (2014), "Significance of geological parameters for predicting water inflow in hard rock tunnels", Rock Mech. Rock Eng., 47(3), 853-868. https://doi.org/10.1007/s00603-013-0384-9.
- Hwang, J.H. and Lu, C.C. (2007), "A semi-analytical method for analyzing the tunnel water inflow", Tunn. Undergr. Sp. Tech., 22(1), 39-46. https://doi.org/10.1016/j.tust.2006.03.003.
- Jin, X., Li, Y., Luo, Y. and Liu, H. (2016), "Prediction of city tunnel water inflow and its influence on overlain lakes in karst valley", Environ. Earth Sci., 75(16), 1162. https://doi.org/10.1007/s12665-016-5949-y.
- Li, L., Lei, T., Li, S., Zhang, Q., Xu, Z., Shi, S. and Zhou, Z. (2015), "Risk assessment of water inrush in karst tunnels and software development", Arabian J. Geosci., 8(4), 1843-1854. https://doi.org/10.1007/s12517-014-1365-3.
- Li, S., He, P., Li, L., Shi, S., Zhang, Q., Zhang, J. and Hu, J. (2017), "Gaussian process model of water inflow prediction in tunnel construction and its engineering applications", Tunn. Undergr. Sp. Tech., 69, 155-161. https://doi.org/10.1016/j.tust.2017.06.018.
- Li, S., Zhou, Z., Li, L., Xu, Z., Zhang, Q. and Shi, S. (2013), "Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system", Tunn. Undergr. Sp. Tech., 38, 50-58. https://doi.org/10.1016/j.tust.2013.05.001.
- Liu, W., Liang, J. and Xu, T. (2023), "Tunnelling-induced ground deformation subjected to the behavior of tail grouting materials", Tunn. Undergr. Sp. Tech., 140, 105253. https://doi.org/10.1016/j.tust.2023.105253.
- Mahmoodzadeh, A., Mohammadi, M., Noori, K.M.G., Khishe, M., Ibrahim, H.H., Ali, H.F.H. and Abdulhamid, S.N. (2021), "Presenting the best prediction model of water inflow into drill and blast tunnels among several machine learning techniques", Automat. Constr., 127, 103719. https://doi.org/10.1016/j.autcon.2021.103719.
- Mansouri, I., Hu, J. and Kisi, O. (2016), "Novel predictive model of the debonding strength for masonry members retrofitted with FRP", Appl. Sci., 6(11), 337. https://doi.org/10.3390/app6110337.
- Su, K., Zhou, Y., Wu, H., Shi, C. and Zhou, L. (2017), "An analytical method for groundwater inflow into a drained circular tunnel", Groundwater, 55(5), 712-721. https://doi.org/10.1111/gwat.12513.
- Shi, M., Hu, W., Li, M., Zhang, J., Song, X. and Sun, W. (2023), "Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine", Mech. Syst. Signal Pr., 188, 110022. https://doi.org/10.1016/j.ymssp.2022.110022.
- Wang, Y., Yang, W., Li, M. and Liu, X. (2012), "Risk assessment of floor water inrush in coal mines based on secondary fuzzy comprehensive evaluation", Int. J. Rock Mech. Min. Sci., 52, 50-55. https://doi.org/10.1016/j.ijrmms.2012.03.006.
- Xie, H., Jiang, C., He, J. and Han, H. (2019), "Analytical solution for the steady-state Karst water inflow into a tunnel", Geofluids, 2019, 1-9. https://doi.org/10.1155/2019/1756856.
- Yao, B., Bai, H. and Zhang, B. (2012), "Numerical simulation on the risk of roof water inrush in Wuyang Coal Mine", Int. J. Min. Sci. Technol., 22(2), 273-277. https://doi.org/10.1016/j.ijmst.2012.03.006
- Yin, H., Wu, Q., Yin, S., Dong, S., Dai, Z. and Soltanian, M.R. (2023). "Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest", J. Hydrology, 616, 128813. https://doi.org/10.1016/j.jhydrol.2022.128813.
- Zhao, N., Li, D.Q., Gu, S.X. and Du, W. (2024), "Analytical fragility relation for buried cast iron pipelines with lead-caulked joints based on machine learning algorithms", Earthq. Spectra, 40(1), 566-583. https://doi.org/10.1177/87552930231209195.