Acknowledgement
All authors contributed to the study conception and design. This work is supported by Henan Natural Science Foundation Youth Fund Project (No.232300421331), Joint fund of the technical R&D program of Henan Province(225200810005),Key Scientific Research Projects of Colleges and Universities in Henan Province (No.23A440005) and Postdoctoral Research Grant in Henan Province (No.202103049), China Postdoctoral Science Foundation (2023M741009).
References
- Ahmed, Z., Wang, S., Hashmi, M.Z. Zishan, Z. and Chengjin, Z. (2020), "Causes, characterization, damage models, and constitutive modes for rock damage analysis: a review", Arabian J. Geosci., 13, 806. https://doi.org/10.1007/s12517-020-05755-3.
- Ali, U., Muhammad, W., Brahme A, Skiba, O. and Inal, K. (2019), "Application of artificial neural networks in micromechanics for polycrystalline metals", Int. J. Plasticity, 120, 205-219. https://doi.org/10.1016/j.ijplas.2019.05.001.
- Basheer, I.A. and Hajmeer, M. (2000), "Artificial neural networks: fundamentals, computing, design, and application", J. Microbial. Method., 43(1), 3-31. https://doi.org/10.1016/S0167-7012(00)00201-3.
- Cerfontaine, B., Charlier, R., Collin F. and Taiebat, M. (2017), "Validation of a new elasto-plastic constitutive model dedicated to the cyclic behaviour of brittle rock materials", Rock Mech. Rock Eng., 50, 2677-2694. https://doi.org/10.1007/s00603-017-1258-3.
- Chen, X., Lin, J. Chao, G., Yang, Y., Yin, J.C. and Fan, H. (2021), "Energy evolution characteristics and damage characterization of sandstone under cyclic loading and unloading", Sci. Technol. Eng., 22(14), 5792-5799.
- Crotogino, F., Mohmeyer, K.U. and Scharf, R. (2001), Huntorf caes: More than 20 years of successful operation, Orlando, Florida, USA.
- Deng, X. (2013), "Study on damage evolution of sandstone and its constitutive model under cyclic loading and unloading", PhD thesis,Jiangxi University of Science and Technology, https://doi.org/10.7666/d.D444605.
- Gong, F., Yan, J., Wang, Y. and Luo, S. (2020), "Experimental study on energy evolution and storage performances of rock material under uniaxial cyclic compression", Shock Vib., 2020, https://doi.org/10.1155/2020/8842863.
- Gong, F., Zhang, P. and Du, K. (2022), "A novel staged cyclic damage constitutive model for brittle rock based on linear energy dissipation law: modelling and validation", Rock Mech. Rock Eng., 55(10), 6249-6262. https://doi.org/10.1007/s00603-022-02930-8.
- Haimson, B. (1978), Effect of cyclic loading on rock, ASTM International, https://doi.org/10.1520/stp35679s.
- Heap, M., Faulkner, D., Meredith, P. and Vinciguerra, S. (2010), "Elastic moduli evolution and accompanying stress changes with increasing crack damage: implications for stress changes around fault zones and volcanoes during deformation", Geophys. J. Int., 183(1), 225-236. https://doi.org/10.1111/j.1365-246X.2010.04726.x.
- Jiang, D., Chen, J., Ren, S., Xi, Y. and Yang, C. (2013), "A damage constitutive model of rock salt based on acoustic emission characteristics", In: Clean Energy Systems in the Subsurface: Production, Storage and Conversion: Proceedings of the 3rd Sino-German Conference "Underground Storage of CO2 and Energy", Goslar, Germany, 21-23 May 2013. https://doi.org/CNKI:SUN:ZNGD.0.2013-12-037.
- Jiang, Q., Liu, X., Li, S., Liu, J., Liu, Q. and Sun, W. (2023), "Coupling deterioration model of mechanical parameters for the jinping marble under progressive damage conditions", Rock Mech. Rock Eng., 56 (6), 3993-4018. https://doi.org/10.1007/s00603-023-03268-5.
- Jing, L., Li, X., Yan, Y., et al. (2022), "Study on the constitutive model of coal rock damage under hierarchical cyclic loading and unloading", Coal Mine Saf., 53(1), 8. https://doi.org/10.13347/j.cnki.mkaq.2022.01.011.
- Li, X., Cao, W.G. and Su, Y.H. (2012), "A statistical damage constitutive model for softening behavior of rocks", Eng. Geol., 143, 1-17. https://doi.org/10.1016/j.enggeo.2012.05.005.
- Liu, T.W., He, J.D. and Xu, W.J. (2013), "Energy properties of failure of marble samples under triaxial compression", Chinese J. Geotech. Eng., 35(2), 395-400. https://doi.org/CNKI:SUN:YTGC.0.2013-02-027.
- Liu, X.M., Li, X., Liu, J. and Zhao, M. (2011), "Slacking mechanism of red sandstone based on energy dissipation principle", J. Central South Univ., (Science and Technology), 42(10), 3143-3149. https://doi.org/CNKI:SUN:ZNGD.0.2011-10-043. 10-043
- Liu, X.S., Ning, J., Tan, Y. and Gu, Q. (2016), "Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading", Int. J. Rock Mech. Min Sci., 85, 27-32. https://doi.org/10.1016/j.ijrmms.2016.03.003.
- Liu, Y., Dai, F., Zhao, T. and Xu, N. (2017), "Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression", Rock Mech. Rock Eng., 50, 89-112. https://doi.org/10.1007/s00603-016-1085-y.
- Liu, Z., Zhao, G., Meng, X., Zhang, R., Chunliang, D. and Xu, W. (2021), "Energy analysis method for uniaxial compression test of sandstone under static and quasi dynamic loading rates", Adv. Mater. Sci. Eng., 2021(6), 1-11. https://doi.org/10.1155/2021/9933243.
- Luo, J. and Li, X. (2020), "Constitutive model of rock damage under cyclic loading and unloading", J. Anhui Univ. Sci. Technol., (Natural Science Edition), https://doi.org/CNKI:SUN:HLGB.0.2020-01-003.
- Meng, Q., Wang, C., Huang, B., et al (2020), "Rock energy evolution and distribution law under three-axis cyclic loading and unloading conditions", Chinese J. Rock Mech. Eng., 39(10), 13. https://doi.org/10.13722/j.cnki.jrme.2020.0208.
- Mo, H. (1988), "Cyclic experiments of rocks and study of constitutive relationships", Chinese J. Rock Mech. Eng., 7(3), 215-224
- Moradian, Z., Einstein, H.H. and Ballivy, G. (2016), "Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals", Rock Mech. Rock Eng., 49, 785-800. https://doi.org/10.1007/s00603-015-0775-1.
- Pourhosseini, O. and Shabanimashcool, M. (2014), "Development of an elasto-plastic constitutive model for intact rocks", Int. J. Rock Mech. Min. Sci., 66, 1-12. https://doi.org/10.1016/j.ijrmms.2013.11.010.
- Ray, S., Sarkar, M. and Singh, T. (1999), "Effect of cyclic loading and strain rate on the mechanical behaviour of sandstone", Int. J. Rock Mech. Min. Sci., 36(4), 543-549. https://doi.org/10.1016/S0148-9062(99)00016-9.
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning representations by back-propagating errors", Nature, 323(6088), 533-536. https://doi.org/10.7551/mitpress/1888.003.0013.
- Sloan, J., Filz, G. and Collin, J. (2013), "Field-scale column-supported embankment test facility", Geotech. Test. J., 36(6), 891-902. https://doi.org/10.1520/gtj20120229.
- Su, C. and Yang, S. (2006), "Test of rock sample deformation and strength characteristics under cyclic loading and unloading", J. Hohai Univ., 34(6), 5. https://doi.org/10.3321/j.issn:1000-1980.2006.06.016.
- Sun, Z.K. (2022), "Study on mechanical properties and energy evolution of sandstone under cyclic loading and unloading", PhD thesis, Shenyang Jianzhu University, https://doi.org/10.27809/d.cnki.gsjgc.2021.000215.
- Taheri, A. and Tatsuoka, F. (2013), "A new method to simulate stress-strain relations from multiple-step loading triaxial compression test results", Geotech. Test. J., 36(6), 799-810. https://doi.org/10.1520/gtj20130005.
- Tao, Z. and Mo, H. (1990), "An experimental study and analysis of the behaviour of rock under cyclic loading", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 27(1), 51-56. https://doi.org/10.1016/0148-9062(90)90008-P.
- Tian, Y. and Yu, R. (2014), "Energy analysis of limestone during triaxial compression under different confining pressures", Rock Soil Mech., 35(1), 118-129. https://doi.org/CNKI:SUN:YTLX.0.2014-01-018.
- Wang, C. (2022), "Study on the damage evolution law of red sandstone under different cyclic loading and unloading paths", https://doi.org/10.27860/d.cnki.gsxwl.2021.000050.
- Wang, Z., Li, S., Qiao, L. and Zhao, J. (2013), "Fatigue behavior of granite subjected to cyclic loading under triaxial compression condition", Rock Mech. Rock Eng., 46, 1603-1615. https://doi.org/10.1007/s00603-013-0387-6.
- Wang, Z.C., Zhao, J., Li, S., et al. (2012), "Fatigue mechanical properties of granite under cyclic loading and its constitutive model", Chinese J. Rock Mech. Eng., 31(9), 1888-1900. https://doi.org/10.3969/j.issn.1000-6915.2012.09.021.
- Wu, L.Y., Ma, D., Wang, Z., Zhang, J., Zhang, B., Li, J., Liao, J. and Tong, J. (2023), "A deep cnn-based constitutive model for describing of statics characteristics of rock materials", Eng. Fract. Mech., 279. https://doi.org/10.1016/j.engfracmech.2023.109054.
- Wu, L.Y., Wang, Z., Ma, D., Zhang, J., Wu, G., Wen, S., Zha, M. and Wu, L. (2022), "A continuous damage statistical constitutive model for sandstone and mudstone based on triaxial compression tests", Rock Mech. Rock Eng., 55(8), 4963-4978. https://doi.org/10.1007/s00603-022-02924-6.
- Wu, S., Zhao, S., Wu, D. and Wang, Y. (2018), "Constitutive modelling for restrained recovery of shape memory alloys based on artificial neural network", Neuro Quantology, 16(5). https://doi.org/10.14704/nq.2018.16.5.1387.
- Xiao, J.Q., Ding, D.X., Jiang, F.L. and Xu, G. (2010), "Fatigue damage variable and evolution of rock subjected to cyclic loading", Int. J. Rock Mech. Min. Sci., 47(3), 461-468. https://doi.org/10.1016/j.ijrmms.2009.11.003.
- Xie, H., Ju, Y., Li, L., et al. (2008), "The energy mechanism of the deformation and failure process of rock mass", Chinese J. Rock Mech. Eng., 27(9), 1729-1740. https://doi.org/10.3321/j.issn:1000-6915.2008.09.001.
- Xie, H.P. (1990), Rock concrete damage mechanics, Rock concrete damage mechanics
- Xu, L., Yang, Y., Zhang, Y., Xue, Y., Yu, Y. and Hao, N. (2023), "Estimation of stress-strain constitutive model for ultra-high performance concrete after high temperature with an deep neural network based method", Constr. Build. Mater., 408, 133690. https://doi.org/10.1016/j.conbuildmat.2023.133690.
- Xu, W. and Wei, L. (2002), "Study of statistical constitutive model of rock damage", Chinese J. Rock Mech. Eng., 21(6), 787-791. https://doi.org/10.3321/j.issn:1000-6915.2002.06.006.
- Yang, D.F., Zhang, D., Niu, S., Dang, Y., Feng, W. and Ge, S. (2018), "Experiment and study on mechanical property of sandstone post-peak under the cyclic loading and unloading", Geotech. Geol. Eng., 36, 1609-1620. https://doi.org/10.1007/s10706-017-0414-6.
- Zhang, J., Yin, Y., Shi, W., Bian, H., Shi, L., Wu, L., Han, Z., Zheng, J., He, X. (2023), "Strength and uniformity of EICP-treated sand under multi-factor coupling effects", Biogeotechnics. 1(1), 100007. https://doi.org/10.1016/j.bgtech.2023.100007.
- Zhang, M. (2019), "Study on infrasonic characteristics and damage characterization of red sandstone under cyclic loading and unloading", PhD thesis, Jiangxi University of Science and Technology. https://doi.org/CNKI:CDMD:2.1018.065200.
- Zhang, P.Y., Xia, C.C., Zhou, S.W., et al. (2015), "Study on cyclic addition unloading rock constitutive model", Geomechanics, 36(12), 3354-3359. https://doi.org/10.16285/j.rsm.2015.12.002.
- Zhang, R., Liu, Y. and Sun, H. (2020), "Physics informed multi-lstm networks for metamodeling of nonlinear structures", Comput. Method. Appl. M., 369, 113226. https://doi.org/10.1016/j.cma.2020.113226.
- Zhou, J.T. (2019), "Experimental study on acoustic emission characteristics of rock materials with different particle sizes under cyclic loading and unloading conditions", PhD thesis, Jiangxi University of Science and Technology.
- Zhou, L. (2018), "Experiment research on the deformation characteristics and damage variable expression of marble under cyclic load", PhD thesis, Huaqiao University. https://doi.org/CNKI:CDMD:2.1018.887007.
- Zhou, S.W., Xia, C.C., Zhao, H.B., Mei, S.H. and Zhou, Y. (2017), "Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature", Acta Geophysica, 65, 893-906. https://doi.org/10.1007/s11600-017-0073-2.
- Zhou, T.B., Qin, Y., Ma, Q. and Liu, J. (2019), "A constitutive model for rock based on energy dissipation and transformation principles", Arabian J. Geosci., 12, 1-14. https://doi.org/10.1007/s12517-019-4678-4.