DOI QR코드

DOI QR Code

Deep learning-based AI constitutive modeling for sandstone and mudstone under cyclic loading conditions

  • Luyuan Wu (School of Civil Engineering and Architecture, Henan University) ;
  • Meng Li (School of Civil Engineering and Architecture, Henan University) ;
  • Jianwei Zhang (School of Civil Engineering and Architecture, Henan University) ;
  • Zifa Wang (School of Civil Engineering and Architecture, Henan University) ;
  • Xiaohui Yang (Henan Provincial Engineering Research Center for Artificial Intelligence Theory and Algorithm, Henan University) ;
  • Hanliang Bian (School of Civil Engineering and Architecture, Henan University)
  • Received : 2023.10.13
  • Accepted : 2024.03.10
  • Published : 2024.04.10

Abstract

Rocks undergoing repeated loading and unloading over an extended period, such as due to earthquakes, human excavation, and blasting, may result in the gradual accumulation of stress and deformation within the rock mass, eventually reaching an unstable state. In this study, a CNN-CCM is proposed to address the mechanical behavior. The structure and hyperparameters of CNN-CCM include Conv2D layers × 5; Max pooling2D layers × 4; Dense layers × 4; learning rate=0.001; Epoch=50; Batch size=64; Dropout=0.5. Training and validation data for deep learning include 71 rock samples and 122,152 data points. The AI Rock Constitutive Model learned by CNN-CCM can predict strain values(ε1) using Mass (M), Axial stress (σ1), Density (ρ), Cyclic number (N), Confining pressure (σ3), and Young's modulus (E). Five evaluation indicators R2, MAPE, RMSE, MSE, and MAE yield respective values of 0.929, 16.44%, 0.954, 0.913, and 0.542, illustrating good predictive performance and generalization ability of model. Finally, interpreting the AI Rock Constitutive Model using the SHAP explaining method reveals that feature importance follows the order N > M > σ1 > E > ρ > σ3.Positive SHAP values indicate positive effects on predicting strain ε1 for N, M, σ1, and σ3, while negative SHAP values have negative effects. For E, a positive value has a negative effect on predicting strain ε1, consistent with the influence patterns of conventional physical rock constitutive equations. The present study offers a novel approach to the investigation of the mechanical constitutive model of rocks under cyclic loading and unloading conditions.

Keywords

Acknowledgement

All authors contributed to the study conception and design. This work is supported by Henan Natural Science Foundation Youth Fund Project (No.232300421331), Joint fund of the technical R&D program of Henan Province(225200810005),Key Scientific Research Projects of Colleges and Universities in Henan Province (No.23A440005) and Postdoctoral Research Grant in Henan Province (No.202103049), China Postdoctoral Science Foundation (2023M741009).

References

  1. Ahmed, Z., Wang, S., Hashmi, M.Z. Zishan, Z. and Chengjin, Z. (2020), "Causes, characterization, damage models, and constitutive modes for rock damage analysis: a review", Arabian J. Geosci., 13, 806. https://doi.org/10.1007/s12517-020-05755-3.
  2. Ali, U., Muhammad, W., Brahme A, Skiba, O. and Inal, K. (2019), "Application of artificial neural networks in micromechanics for polycrystalline metals", Int. J. Plasticity, 120, 205-219. https://doi.org/10.1016/j.ijplas.2019.05.001.
  3. Basheer, I.A. and Hajmeer, M. (2000), "Artificial neural networks: fundamentals, computing, design, and application", J. Microbial. Method., 43(1), 3-31. https://doi.org/10.1016/S0167-7012(00)00201-3.
  4. Cerfontaine, B., Charlier, R., Collin F. and Taiebat, M. (2017), "Validation of a new elasto-plastic constitutive model dedicated to the cyclic behaviour of brittle rock materials", Rock Mech. Rock Eng., 50, 2677-2694. https://doi.org/10.1007/s00603-017-1258-3.
  5. Chen, X., Lin, J. Chao, G., Yang, Y., Yin, J.C. and Fan, H. (2021), "Energy evolution characteristics and damage characterization of sandstone under cyclic loading and unloading", Sci. Technol. Eng., 22(14), 5792-5799.
  6. Crotogino, F., Mohmeyer, K.U. and Scharf, R. (2001), Huntorf caes: More than 20 years of successful operation, Orlando, Florida, USA.
  7. Deng, X. (2013), "Study on damage evolution of sandstone and its constitutive model under cyclic loading and unloading", PhD thesis,Jiangxi University of Science and Technology, https://doi.org/10.7666/d.D444605.
  8. Gong, F., Yan, J., Wang, Y. and Luo, S. (2020), "Experimental study on energy evolution and storage performances of rock material under uniaxial cyclic compression", Shock Vib., 2020, https://doi.org/10.1155/2020/8842863.
  9. Gong, F., Zhang, P. and Du, K. (2022), "A novel staged cyclic damage constitutive model for brittle rock based on linear energy dissipation law: modelling and validation", Rock Mech. Rock Eng., 55(10), 6249-6262. https://doi.org/10.1007/s00603-022-02930-8.
  10. Haimson, B. (1978), Effect of cyclic loading on rock, ASTM International, https://doi.org/10.1520/stp35679s.
  11. Heap, M., Faulkner, D., Meredith, P. and Vinciguerra, S. (2010), "Elastic moduli evolution and accompanying stress changes with increasing crack damage: implications for stress changes around fault zones and volcanoes during deformation", Geophys. J. Int., 183(1), 225-236. https://doi.org/10.1111/j.1365-246X.2010.04726.x.
  12. Jiang, D., Chen, J., Ren, S., Xi, Y. and Yang, C. (2013), "A damage constitutive model of rock salt based on acoustic emission characteristics", In: Clean Energy Systems in the Subsurface: Production, Storage and Conversion: Proceedings of the 3rd Sino-German Conference "Underground Storage of CO2 and Energy", Goslar, Germany, 21-23 May 2013. https://doi.org/CNKI:SUN:ZNGD.0.2013-12-037.
  13. Jiang, Q., Liu, X., Li, S., Liu, J., Liu, Q. and Sun, W. (2023), "Coupling deterioration model of mechanical parameters for the jinping marble under progressive damage conditions", Rock Mech. Rock Eng., 56 (6), 3993-4018. https://doi.org/10.1007/s00603-023-03268-5.
  14. Jing, L., Li, X., Yan, Y., et al. (2022), "Study on the constitutive model of coal rock damage under hierarchical cyclic loading and unloading", Coal Mine Saf., 53(1), 8. https://doi.org/10.13347/j.cnki.mkaq.2022.01.011.
  15. Li, X., Cao, W.G. and Su, Y.H. (2012), "A statistical damage constitutive model for softening behavior of rocks", Eng. Geol., 143, 1-17. https://doi.org/10.1016/j.enggeo.2012.05.005.
  16. Liu, T.W., He, J.D. and Xu, W.J. (2013), "Energy properties of failure of marble samples under triaxial compression", Chinese J. Geotech. Eng., 35(2), 395-400. https://doi.org/CNKI:SUN:YTGC.0.2013-02-027.
  17. Liu, X.M., Li, X., Liu, J. and Zhao, M. (2011), "Slacking mechanism of red sandstone based on energy dissipation principle", J. Central South Univ., (Science and Technology), 42(10), 3143-3149. https://doi.org/CNKI:SUN:ZNGD.0.2011-10-043. 10-043
  18. Liu, X.S., Ning, J., Tan, Y. and Gu, Q. (2016), "Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading", Int. J. Rock Mech. Min Sci., 85, 27-32. https://doi.org/10.1016/j.ijrmms.2016.03.003.
  19. Liu, Y., Dai, F., Zhao, T. and Xu, N. (2017), "Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression", Rock Mech. Rock Eng., 50, 89-112. https://doi.org/10.1007/s00603-016-1085-y.
  20. Liu, Z., Zhao, G., Meng, X., Zhang, R., Chunliang, D. and Xu, W. (2021), "Energy analysis method for uniaxial compression test of sandstone under static and quasi dynamic loading rates", Adv. Mater. Sci. Eng., 2021(6), 1-11. https://doi.org/10.1155/2021/9933243.
  21. Luo, J. and Li, X. (2020), "Constitutive model of rock damage under cyclic loading and unloading", J. Anhui Univ. Sci. Technol., (Natural Science Edition), https://doi.org/CNKI:SUN:HLGB.0.2020-01-003.
  22. Meng, Q., Wang, C., Huang, B., et al (2020), "Rock energy evolution and distribution law under three-axis cyclic loading and unloading conditions", Chinese J. Rock Mech. Eng., 39(10), 13. https://doi.org/10.13722/j.cnki.jrme.2020.0208.
  23. Mo, H. (1988), "Cyclic experiments of rocks and study of constitutive relationships", Chinese J. Rock Mech. Eng., 7(3), 215-224
  24. Moradian, Z., Einstein, H.H. and Ballivy, G. (2016), "Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals", Rock Mech. Rock Eng., 49, 785-800. https://doi.org/10.1007/s00603-015-0775-1.
  25. Pourhosseini, O. and Shabanimashcool, M. (2014), "Development of an elasto-plastic constitutive model for intact rocks", Int. J. Rock Mech. Min. Sci., 66, 1-12. https://doi.org/10.1016/j.ijrmms.2013.11.010.
  26. Ray, S., Sarkar, M. and Singh, T. (1999), "Effect of cyclic loading and strain rate on the mechanical behaviour of sandstone", Int. J. Rock Mech. Min. Sci., 36(4), 543-549. https://doi.org/10.1016/S0148-9062(99)00016-9.
  27. Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning representations by back-propagating errors", Nature, 323(6088), 533-536. https://doi.org/10.7551/mitpress/1888.003.0013.
  28. Sloan, J., Filz, G. and Collin, J. (2013), "Field-scale column-supported embankment test facility", Geotech. Test. J., 36(6), 891-902. https://doi.org/10.1520/gtj20120229.
  29. Su, C. and Yang, S. (2006), "Test of rock sample deformation and strength characteristics under cyclic loading and unloading", J. Hohai Univ., 34(6), 5. https://doi.org/10.3321/j.issn:1000-1980.2006.06.016.
  30. Sun, Z.K. (2022), "Study on mechanical properties and energy evolution of sandstone under cyclic loading and unloading", PhD thesis, Shenyang Jianzhu University, https://doi.org/10.27809/d.cnki.gsjgc.2021.000215.
  31. Taheri, A. and Tatsuoka, F. (2013), "A new method to simulate stress-strain relations from multiple-step loading triaxial compression test results", Geotech. Test. J., 36(6), 799-810. https://doi.org/10.1520/gtj20130005.
  32. Tao, Z. and Mo, H. (1990), "An experimental study and analysis of the behaviour of rock under cyclic loading", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 27(1), 51-56. https://doi.org/10.1016/0148-9062(90)90008-P.
  33. Tian, Y. and Yu, R. (2014), "Energy analysis of limestone during triaxial compression under different confining pressures", Rock Soil Mech., 35(1), 118-129. https://doi.org/CNKI:SUN:YTLX.0.2014-01-018.
  34. Wang, C. (2022), "Study on the damage evolution law of red sandstone under different cyclic loading and unloading paths", https://doi.org/10.27860/d.cnki.gsxwl.2021.000050.
  35. Wang, Z., Li, S., Qiao, L. and Zhao, J. (2013), "Fatigue behavior of granite subjected to cyclic loading under triaxial compression condition", Rock Mech. Rock Eng., 46, 1603-1615. https://doi.org/10.1007/s00603-013-0387-6.
  36. Wang, Z.C., Zhao, J., Li, S., et al. (2012), "Fatigue mechanical properties of granite under cyclic loading and its constitutive model", Chinese J. Rock Mech. Eng., 31(9), 1888-1900. https://doi.org/10.3969/j.issn.1000-6915.2012.09.021.
  37. Wu, L.Y., Ma, D., Wang, Z., Zhang, J., Zhang, B., Li, J., Liao, J. and Tong, J. (2023), "A deep cnn-based constitutive model for describing of statics characteristics of rock materials", Eng. Fract. Mech., 279. https://doi.org/10.1016/j.engfracmech.2023.109054.
  38. Wu, L.Y., Wang, Z., Ma, D., Zhang, J., Wu, G., Wen, S., Zha, M. and Wu, L. (2022), "A continuous damage statistical constitutive model for sandstone and mudstone based on triaxial compression tests", Rock Mech. Rock Eng., 55(8), 4963-4978. https://doi.org/10.1007/s00603-022-02924-6.
  39. Wu, S., Zhao, S., Wu, D. and Wang, Y. (2018), "Constitutive modelling for restrained recovery of shape memory alloys based on artificial neural network", Neuro Quantology, 16(5). https://doi.org/10.14704/nq.2018.16.5.1387.
  40. Xiao, J.Q., Ding, D.X., Jiang, F.L. and Xu, G. (2010), "Fatigue damage variable and evolution of rock subjected to cyclic loading", Int. J. Rock Mech. Min. Sci., 47(3), 461-468. https://doi.org/10.1016/j.ijrmms.2009.11.003.
  41. Xie, H., Ju, Y., Li, L., et al. (2008), "The energy mechanism of the deformation and failure process of rock mass", Chinese J. Rock Mech. Eng., 27(9), 1729-1740. https://doi.org/10.3321/j.issn:1000-6915.2008.09.001.
  42. Xie, H.P. (1990), Rock concrete damage mechanics, Rock concrete damage mechanics
  43. Xu, L., Yang, Y., Zhang, Y., Xue, Y., Yu, Y. and Hao, N. (2023), "Estimation of stress-strain constitutive model for ultra-high performance concrete after high temperature with an deep neural network based method", Constr. Build. Mater., 408, 133690. https://doi.org/10.1016/j.conbuildmat.2023.133690.
  44. Xu, W. and Wei, L. (2002), "Study of statistical constitutive model of rock damage", Chinese J. Rock Mech. Eng., 21(6), 787-791. https://doi.org/10.3321/j.issn:1000-6915.2002.06.006.
  45. Yang, D.F., Zhang, D., Niu, S., Dang, Y., Feng, W. and Ge, S. (2018), "Experiment and study on mechanical property of sandstone post-peak under the cyclic loading and unloading", Geotech. Geol. Eng., 36, 1609-1620. https://doi.org/10.1007/s10706-017-0414-6.
  46. Zhang, J., Yin, Y., Shi, W., Bian, H., Shi, L., Wu, L., Han, Z., Zheng, J., He, X. (2023), "Strength and uniformity of EICP-treated sand under multi-factor coupling effects", Biogeotechnics. 1(1), 100007. https://doi.org/10.1016/j.bgtech.2023.100007.
  47. Zhang, M. (2019), "Study on infrasonic characteristics and damage characterization of red sandstone under cyclic loading and unloading", PhD thesis, Jiangxi University of Science and Technology. https://doi.org/CNKI:CDMD:2.1018.065200.
  48. Zhang, P.Y., Xia, C.C., Zhou, S.W., et al. (2015), "Study on cyclic addition unloading rock constitutive model", Geomechanics, 36(12), 3354-3359. https://doi.org/10.16285/j.rsm.2015.12.002.
  49. Zhang, R., Liu, Y. and Sun, H. (2020), "Physics informed multi-lstm networks for metamodeling of nonlinear structures", Comput. Method. Appl. M., 369, 113226. https://doi.org/10.1016/j.cma.2020.113226.
  50. Zhou, J.T. (2019), "Experimental study on acoustic emission characteristics of rock materials with different particle sizes under cyclic loading and unloading conditions", PhD thesis, Jiangxi University of Science and Technology.
  51. Zhou, L. (2018), "Experiment research on the deformation characteristics and damage variable expression of marble under cyclic load", PhD thesis, Huaqiao University. https://doi.org/CNKI:CDMD:2.1018.887007.
  52. Zhou, S.W., Xia, C.C., Zhao, H.B., Mei, S.H. and Zhou, Y. (2017), "Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature", Acta Geophysica, 65, 893-906. https://doi.org/10.1007/s11600-017-0073-2.
  53. Zhou, T.B., Qin, Y., Ma, Q. and Liu, J. (2019), "A constitutive model for rock based on energy dissipation and transformation principles", Arabian J. Geosci., 12, 1-14. https://doi.org/10.1007/s12517-019-4678-4.