참고문헌
- Agrawal, R. Peng, B. Gdoutos, E.E. and Espinosa, H.D. (2008), "Elasticity size effects in ZnO nanowires-a combined experimental-computational approach", Nano Lett. 8(11), 3668-3674. https://doi.org/10.1021/nl801724b.
- Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci. 30(10), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3.
- Akgoz, B. and Civalek, O. (2014), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci. 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011.
- Alazwari, M.A. Daikh, A.A. Houari, M.S.A. Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct. 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
- Alazwari, M.A. Eltaher, M.A. and Abdelrahman, A.A. (2022), "On bending of cutout nanobeams based on nonlocal strain gradient elasticity theory", Steel Compos. Struct. 43(6), 707-723. https://doi.org/10.12989/scs.2022.43.6.707.
- Ansari, R. Gholami, R. Shojaei, M.F. Mohammadi, V. and Sahmani, S. (2013), "Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory", Compos. Struct. 100, 385-397. https://doi.org/10.1016/j.compstruct.2012.12.048.
- Asghari, M. Kahrobaiyan, M.H. Rahaeifard, M. and Ahmadian, M.T. (2011), "Investigation of the size effects in Timoshenko beams based on the couple stress theory", Arch. Appl. Mech. 81, 863-874. https://doi.org/10.1007/s00419-010-0452-5.
- Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412. https://doi.org/10.1103/PhysRevB.80.195412.
- Babaei Gavan, K. Westra, H.J. van der Drift, E.W. Venstra, W.J. and van der Zant, H.S. (2009), "Size-dependent effective Young's modulus of silicon nitride cantilevers", Appl. Phys. Lett. 94(23), 233108. https://doi.org/10.1063/1.3152772.
- Bessaim, A. Houari, M.S.A. Bezzina, S. Merdji, A. Daikh, A.A. Belarbi, M.O. and Tounsi, A. (2023), "Nonlocal strain gradient theory for bending analysis of 2D functionally graded nanobeams", Struct. Eng. Mech. 86(6), 731-738. https://doi.org/10.12989/sem.2023.86.6.731.
- Borjalilou, V. Taati, E. and Ahmadian, M.T. (2019), "Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: Exact solutions", SN Appl. Sci. 1, 1-15. https://doi.org/10.1007/s42452-019-1359-6.
- Daikh, A.A. Bachiri, A. Houari, M.S.A. and Tounsi, A. (2022), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Bas. Des. Struct. Mach. 50(4), 1371-1399. https://doi.org/10.1080/15397734.2020.1752232.
- Daikh, A.A. Bachiri, A. Houari, M.S.A. and Tounsi, A. (2022a), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Bas. Des. Struct. Mach. 50(4), 1371-1399. https://doi.org/10.1080/15397734.2020.1752232.
- Daikh, A.A. Drai, A. Houari, M.S.A. and Eltaher, MA. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct. 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
- Daikh, A.A. Houari, M.S.A. Belarbi, M.O. Chakraverty, S. and Eltaher, M.A. (2022), "Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput. 38(Suppl 3), 2533-2554. https://doi.org/10.1007/s00366-021-01413-8.
- Daikh, A.A. Houari, M.S.A. Belarbi, M.O. Mohamed, S.A. and Eltaher, M.A. (2022b), "Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory", Defence Technol. 18(10), 1778-1809. https://doi.org/10.1016/j.dt.2021.09.011.
- Duan, W.H. and Wang, C.M. (2007), "Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory", Nanotechnol. 18(38), 385704. https://doi.org/10.1088/0957-4484/18/38/385704.
- Ebrahimi, F. and Reza Barati, M. (2016), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131, 1-22. https://doi.org/10.1140/epjp/i2016-16279-y.
- Ebrahimi, F. and Salari, E. (2015), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronautica, 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031.
- Ebrahimi, F. Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51, 223-249. https://doi.org/10.1007/s11012-015-0208-y.
- Ekinci, K.L. and Roukes, M.L. (2005), "Nanoelectromechanical systems", Rev. Scientif. Instrum. 76(6), 061101. https://doi.org/10.1063/1.1927327.
- Eltaher, M.A. Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model. 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci. 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys. 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Esen, I. Alazwari, M.A. Eltaher, M.A. and Abdelrahman, A.A. (2022), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct. 42(6), 805-826. https://doi.org/10.12989/scs.2022.42.6.805.
- Fang, J. Zheng, S. Xiao, J. and Zhang, X. (2020), "Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment", Aerosp. Sci. Technol. 106, 106146. https://doi.org/10.1016/j.ast.2020.106146.
- Fortas, L. Messai, A. Merzouki, T. and Houari, M.S.A. (2022), "Elastic stability of functionally graded graphene reinforced porous nanocomposite beams using two variables shear deformation", Steel Compos. Struct. 43(1), 31-54. https://doi.org/10.12989/scs.2022.43.1.031.
- Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res. 10(3), 281. https://doi.org/10.12989/anr.2021.10.3.281.
- Hadji, L. Avcar, M. and Civalek, O. (2021), "An analytical solution for the free vibration of FG nanoplates", J. Brazil. Soc. Mech. Sci. Eng. 43(9), 418. https://doi.org/10.1007/s40430-021-03134-x
- Houari, M.S.A. Bessaim, A. Bernard, F. Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct. 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
- Lam, D.C. Yang, F. Chong, A.C.M. Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid. 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Li, X. Li, L. Hu, Y. Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct. 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032.
- Lim, C.W. Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid. 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Long, C. Zhao, B. Chen, J. Liu, T. Peng, X. Peng, H. and Yang, X. (2021), "A size-dependent thermal buckling model for micro-beams based on modified gradient elasticity", Arch. Appl. Mech. 91, 3291-3302. https://doi.org/10.1007/s00419-021-01965-7.
- Ma, H.M. Gao, X.L. and Reddy, J. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid. 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007.
- Merzouki, T. Houari, M.S.A. Haboussi, M. Bessaim, A. and Ganapathi, M. (2022), "Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory", Eng. Comput. 38(Suppl 1), 647-665. https://doi.org/10.1007/s00366-020-01156-y.
- Messai, A. Fortas, L. Merzouki, T. and Houari, M.S.A. (2022), "Vibration analysis of FG reinforced porous nanobeams using two variables trigonometric shear deformation theory", Struct. Eng. Mech. 81(4), 461-479. https://doi.org/10.12989/sem.2022.81.4.461.
- Mindlin, R.D. (1963), Microstructure in Linear Elasticity, Columbia University, New York.
- Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solid. Struct. 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.
- Mouffoki, A. Bedia, E.A. Houari, M.S.A. Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst. 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
- Najafi, M. and Ahmadi, I. (2021), "A nonlocal Layerwise theory for free vibration analysis of nanobeams with various boundary conditions on Winkler-Pasternak foundation", Steel Compos. Struct. 40(1), 101-119. https://doi.org/10.12989/scs.2021.40.1.101.
- Nateghi, A. Salamat-talab, M. Rezapour, J. and Daneshian, B. (2012), "Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory", Appl. Math. Model. 36(10), 4971-4987. https://doi.org/10.1016/j.apm.2011.12.035.
- Ozmen, R. Kilic, R. and Esen, I. (2024), "Thermomechanical vibration and buckling response of nonlocal strain gradient porous FG nanobeams subjected to magnetic and thermal fields", Mech. Adv. Mater. Struct. 31(4), 834-853. https://doi.org/10.1080/15376494.2022.2124000.
- Papargyri-Beskou, S. Tsepoura, K.G. Polyzos, D. and Beskos, D. (2003), "Bending and stability analysis of gradient elastic beams", Int. J. Solid. Struct. 40(2), 385-400. https://doi.org/10.1016/S0020-7683(02)00522-X.
- Peddieson, J. Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci. 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.
- Pham, Q.H. and Nguyen, P.C. (2022), "Effects of size-dependence on static and free vibration of FGP nanobeams using finite element method based on nonlocal strain gradient theory", Steel Compos. Struct. 45(3), 331-348. https://doi.org/10.12989/scs.2022.45.3.331.
- Rahmani, O. Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct. 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.
- Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci. 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
- Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci. 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002.
- Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093.
- Xu, X.J. Wang, X.C. Zheng, M.L. and Ma, Z. (2017), "Bending and buckling of nonlocal strain gradient elastic beams", Compos. Struct. 160, 366-377. https://doi.org/10.1016/j.compstruct.2016.10.038.
- Yang, F.A.C.M. Chong, A.C.M. Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct. 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yin, G.S. Deng, Q.T. and Yang, Z.C. (2015), "Bending and buckling of functionally graded Poisson's ratio nanoscale beam based on nonlocal theory", Iran. J. Sci. Technol. (Sci.), 39(4), 559-565. https://doi.org/10.22099/IJSTS.2015.3417.
- Zhang, Y.Y. Wang, Y.X. Zhang, X. Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct. 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.