DOI QR코드

DOI QR Code

Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT

  • Mokhtar Nebab (Department of Civil Engineering, Faculty of Technology, University of M'Hamed BOUGARA Boumerdes) ;
  • Hassen Ait Atmane (Laboratory of Structures, Geotechnics and Risks, Department of Civil Engineering, Hassiba Benbouali University of Chlef) ;
  • Riadh Bennai (Laboratory of Structures, Geotechnics and Risks, Department of Civil Engineering, Hassiba Benbouali University of Chlef) ;
  • Mouloud Dahmane (Laboratory of Structures, Geotechnics and Risks, Department of Civil Engineering, Hassiba Benbouali University of Chlef)
  • Received : 2024.01.15
  • Accepted : 2024.03.25
  • Published : 2024.04.10

Abstract

This paper suggests an analytical approach to investigate the free vibration and stability of functionally graded (FG) beams with both perfect and imperfect characteristics using a quasi-3D higher-order shear deformation theory (HSDT) with stretching effect. The study specifically focuses on FG beams resting on variable elastic foundations. In contrast to other shear deformation theories, this particular theory employs only four unknown functions instead of five. Moreover, this theory satisfies the boundary conditions of zero tension on the beam surfaces and facilitates hyperbolic distributions of transverse shear stresses without the necessity of shear correction factors. The elastic medium in consideration assumes the presence of two parameters, specifically Winkler-Pasternak foundations. The Winkler parameter exhibits variable variations in the longitudinal direction, including linear, parabolic, sinusoidal, cosine, exponential, and uniform, while the Pasternak parameter remains constant. The effective material characteristics of the functionally graded (FG) beam are assumed to follow a straightforward power-law distribution along the thickness direction. Additionally, the investigation of porosity includes the consideration of four different types of porosity distribution patterns, allowing for a comprehensive examination of its influence on the behavior of the beam. Using the virtual work principle, equations of motion are derived and solved analytically using Navier's method for simply supported FG beams. The accuracy is verified through comparisons with literature results. Parametric studies explore the impact of different parameters on free vibration and buckling behavior, demonstrating the theory's correctness and simplicity.

Keywords

References

  1. Ait Atmane, H., Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org10.1007/s10999-015-9318-x.
  2. Akavci, S.S. (2014), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Compos. Struct., 108, 667-676. https://doi.org/10.1016/j.compstruct.2013.10.019.
  3. Al-shujairi, M. and Mollamahmutoglu, C. (2018), "Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect", Compos. Part B., 154, 292-312. https://doi.org/10.1016/j.compositesb.2018.08.103.
  4. Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Atmane, H.A. and Tounsi, A. (2018), "Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory", Earthq. Struct., 15(4), 369-382. https://doi.org/10.12989/eas.2018.15.4.369.
  5. Barati, M.R., Sadr, M.H. and Zenkour, A.M. (2016), "Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation", Int. J. Mech. Sci., 117, 309-320. https://doi.org/10.1016/j.ijmecsci.2016.09.012.
  6. Belaid, B., Mokhtar, N., Riadh, B., Hassen, A.A., Abdeldjebbar, T. and Mohammed, B. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  7. Bennai, R., Fourn, H., Nebab, M., Atmane, R.A., Mellal, F., Atmane, H.A., Benadouda, M. and Touns, A. (2022), "On the wave dispersion and vibration characteristics of FG plates resting on elastic Kerr foundations via HSDT", Adv. Concrete Constr., 14(3), 169-183. https://doi.org/10.12989/acc.2022.14.3.169.
  8. Bennai, R., Mellal, F., Nebab, M., Fourn, H., Benadouda, M., Atmane, H.A., Tounsi, A. and Hussain, M. (2022), "On wave dispersion properties of functionally graded plates resting on elastic foundations using quasi-3D and 2D HSDT", Earthq. Struct., 22(5), 447-460. https://doi.org/10.12989/eas.2022.22.5.447.
  9. Bouiadjra, R.B., Bachiri, A., Benyoucef, S., Fahsi, B. and Bernard, F. (2020), "An investigation of the thermodynamic effect on the response of FG beam on elastic foundation", Struct. Eng. Mech., 76(1), 115-127. https://doi.org/10.12989/sem.2020.76.1.115.
  10. Chen, C.S., Wang, H., Chen, T.J. and Chen, W.R. (2021), "Parametric instability of functionally graded carbon nanotube-reinforced hybrid composite plates in thermal environments", Int. J. Mech. Mater. Des., 17(1), 171-186. https://doi.org10.1007/s10999-020-09522-w.
  11. Chen, W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Math. Model., 28(10), 877-890. https://doi.org/10.1016/j.apm.2004.04.001.
  12. Chikh, A. (2020), "Investigations in static response and free vibration of a functionally graded beam resting on elastic foundations", Frattura ed Integrita Strutturale, 14(51), 115-126. https://doi.org/10.3221/IGF-ESIS.51.09.
  13. Cuba, L., Arciniega, R.A. and Mantari, J.L. (2019), "Generalized 2-Unknown's HSDT to study isotropic and orthotropic composite plates", J. Appl. Comput. Mech., 5(1), 141-149. https://doi.org10.22055/jacm.2018.24953.1222.
  14. Dehghan, M. and Baradaran, G.H. (2011), "Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method", Appl. Math. Comput., 218(6), 2772-2784. https://doi.org/10.1016/j.amc.2011.08.020.
  15. Do, D.T.T., Nguyen, A.T. and Nguyen, N.V. (2023), "An isogeometric approach of static, free vibration and buckling analyses of multilayered solar cell structures", Int. J. Mech. Mater. Des., 1-17. https://doi.org10.1007/s10999-023-09686-1.
  16. Fahsi, B., Bouiadjra, R.B., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2019), "Assessing the effects of porosity on the bending, buckling, and vibrations of functionally graded beams resting on an elastic foundation by using a new refined Quasi-3D theory", Mech. Compos. Mater., 55(2), 219-230. https://doi.org10.1007/s11029-019-09805-0.
  17. Frahlia, H., Bennai, R., Nebab, M., Ait Atmane, H. and Tounsi, A. (2023), "Assessing effects of parameters of viscoelastic foundation on the dynamic response of functionally graded plates using a novel HSDT theory", Mech. Adv. Mater. Struct., 30(13), 2765-2779. https://doi.org10.1080/15376494.2022.2062632.
  18. Gan, B.S., Trinh, T.H., Le, T.H. and Nguyen, D.K. (2015), "Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads", Struct. Eng. Mech., 53(5), 981. https://doi.org/10.12989/sem.2015.53.5.981.
  19. Giang, N.T. and Hong, N.T. (2022), "Hygro-thermo-mechanical stability analysis of variable thickness functionally graded sandwich porous plates resting on variable elastic foundations using finite element method", J. Therm. Stress., 45(8), 641-668. https://doi.org10.1080/01495739.2022.2089307.
  20. Grover, N., Maiti, D.K. and Singh, B.N. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012.
  21. Hadji, L., Daouadji, T.H. and Bedia, E. (2016), "Dynamic behavior of FGM beam using a new first shear deformation theory", Earthq. Struct., 10(2), 451. https://doi.org/10.12989/eas.2016.10.2.451.
  22. Hamidi, A., Houari, M.S.A., Mahmoud, S. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235.
  23. Han, S.C., Park, W.T. and Jung, W.Y. (2016), "3D graphical dynamic responses of FGM plates on Pasternak elastic foundation based on quasi-3D shear and normal deformation theory", Compos. Part B, 95, 324-334. https://doi.org/10.1016/j.compositesb.2016.04.018.
  24. Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  25. Ibnorachid, Z., Boutahar, L., EL Bikri, K. and Benamar, R. (2019), "Buckling temperature and natural frequencies of thick porous functionally graded beams resting on elastic foundation in a thermal environment", Adv. Acoust. Vib., 2019, Article ID 7986569. https://doi.org/10.1155/2019/7986569.
  26. Karimi, M., Khoshgoftar, M.J., Karimi, M., Mirzaali, M.J. and Javanbakht, Z. (2023), "An analytical model for the static behaviour of honeycomb sandwich plates with auxetic cores using higher-order shear deformation theories", Int. J. Mech. Mater. Des., 19(4), 951-969. https://doi.org10.1007/s10999-023-09667-4.
  27. Kehli, A., Nebab, M., Bennai, R., Ait Atmane, H. and Dahmane, M. (2024). "Dynamic characteristics analysis of functionally graded cracked beams resting on viscoelastic medium using a new quasi-3D HSDT", Mech. Adv. Mater. Struct., 1-14. https://doi.org10.1080/15376494.2024.2326983.
  28. Kumar, R., Patil, H.S. and Lal, A. (2011), "Hygrothermoelastic free vibration response of laminated composite plates resting on elastic foundations with random system properties: Micromechanical model", J. Thermoplast. Compos. Mater., 26(5), 573-604. https://doi.org10.1177/0892705711425851.
  29. Latroch, N., Dahmane, M., Ahmed Soufiane Benosman, Bennai, R., Atmane, H.A. and Benadouda., M. (2023), "Inclined crack identification in bidirectional FG beams on an elastic foundation using the h-version of the finite element method", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2023.2290226.
  30. Li, Q., Zhang, H. and Wang, S. (2023), "Axisymmetric thermal vibration analysis of graded porous circular plates based on physical neutral surface and Reddy's third-order shear theory", Mech. Bas. Des. Struct. Mach., 1-27. https://doi.org10.1080/15397734.2023.2286480.
  31. Malekzadeh, P. (2009), "Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations", Compos. Struct., 89(3), 367-373. https://doi.org/10.1016/j.compstruct.2008.08.007.
  32. Mantari, J.L. (2016), "General recommendations to develop 4-unknowns quasi-3D HSDTs to study FGMs", Aerosp. Sci. Technol., 58, 559-570. https://doi.org/10.1016/j.ast.2016.09.007.
  33. Mantari, J.L. and Granados, E.V. (2015), "Thermoelastic behavior of advanced composite sandwich plates by using a new 6 unknown quasi-3D hybrid type HSDT", Compos. Struct., 126, 132-144. https://doi.org/10.1016/j.compstruct.2015.01.055.
  34. Mantari, J.L. and Granados, E.V. (2016), "An original FSDT to study advanced composites on elastic foundation", Thin Wall. Struct., 107, 80-89. https://doi.org/10.1016/j.tws.2016.05.024.
  35. Mantari, J.L. and Guedes Soares, C. (2015), "Five-unknowns generalized hybrid-type quasi-3D HSDT for advanced composite plates", Appl. Math. Model., 39(18), 5598-5615. https://doi.org/10.1016/j.apm.2015.01.020.
  36. Meksi, A., Sekkal, M., Bouiadjra, R.B., Benyoucef, S. and Tounsi, A. (2023), "Assessing the effect of temperature-dependent properties on the dynamic behavior of FG porous beams rested on variable elastic foundation", Struct. Eng. Mech., 85(6), 717. https://doi.org/10.12989/sem.2023.85.6.717.
  37. Mellal, F., Bennai, R., Avcar, M., Nebab, M. and Atmane, H.A. (2023), "On the vibration and buckling behaviors of porous FG beams resting on variable elastic foundation utilizing higher-order shear deformation theory", Acta Mechanica, 234(9), 3955-3977. https://doi.org10.1007/s00707-023-03603-5.
  38. Mesbah, A., Belabed, Z., Amara, K., Tounsi, A., Bousahla, A.A. and Bourada, F. (2023), "Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams", Struct. Eng. Mech., 86(3), 291-309. https://doi.org/10.12989/sem.2023.86.3.291.
  39. Nebab, M., Ait Atmane, H., Bennai, R. and Tounsi, A. (2019), "Effect of variable elastic foundations on static behavior of functionally graded plates using sinusoidal shear deformation", Arab. J. Geosci., 12(24), 809. https://doi.org10.1007/s12517-019-4871-5.
  40. Nebab, M., Atmane, H.A., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org10.12989/eas.2019.17.5.447.
  41. Nebab, M., Atmane, H.A., Bennai, R., Tounsi, A. and Bedia, E.A. (2019), "Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT", Struct. Eng. Mech., 69(5), 511-525. https://doi.org10.12989/sem.2019.69.5.511.
  42. Nebab, M., Dahmane, M., Belqassim, A., Atmane, H.A., Bernard, F., Benadouda, M., Bennai, R. and Hadji, L. (2023), "Fundamental frequencies of cracked FGM beams with influence of porosity and Winkler/Pasternak/Kerr foundation support using a new quasi-3D HSDT", Mech. Adv. Mater. Struct., 1-13. https://doi.org10.1080/15376494.2023.2294371.
  43. Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B, 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.
  44. Nie, K. and Liu, Y. (2021), "Three-dimensional buckling analysis of variable angle tow composite laminated plates", Int. J. Mech. Mater. Des., 17(1), 89-98. https://doi.org10.1007/s10999-020-09511-z.
  45. Park, M. and Choi, D.H. (2018), "A simplified first-order shear deformation theory for bending, buckling and free vibration analyses of isotropic plates on elastic foundations", KSCE J. Civil Eng., 22(4), 1235-1249. https://doi.org10.1007/s12205-017-1517-6.
  46. Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321(1), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.
  47. Prakash, A., Kumar, P., Saran, V.H. and Harsha, S.P. (2023), "NURBS based thermoelastic behaviour of thin functionally graded sigmoidal (TFGS) porous plate resting on variable Winkler's foundation", Int. J. Mech. Mater. Des., 19(4), 831-860. https://doi.org10.1007/s10999-023-09654-9.
  48. Rahmani, F., Kamgar, R. and Rahgozar, R. (2023), "Analysis of metallic and functionally graded beams using isogeometric approach and Carrera Unified Formulation", Mech. Adv. Mater. Struct., 30(4), 894-911. https://doi.org10.1080/15376494.2022.2028042.
  49. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  50. Sayyad, A.S. and Ghugal, Y.M. (2018), "Effect of thickness stretching on the static deformations, natural frequencies, and critical buckling loads of laminated composite and sandwich beams", J. Brazil Soc. Mech. Sci. Eng., 40(6), 296. https://doi.org10.1007/s40430-018-1222-5.
  51. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
  52. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
  53. Sobhy, M. (2015), "Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations", Int. J. Appl. Mech., 07(06), 1550082. https://doi.org10.1142/s1758825115500829.
  54. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. https://doi.org/10.12989/sem.2021.77.2.217.
  55. Trinh, T.H., Nguyen, D.K., Gan, B.S. and Alexandrov, S. (2016), "Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation", Struct. Eng. Mech., 58(3), 515-532. https://doi.org10.12989/sem.2016.58.3.515.
  56. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006.
  57. Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029.
  58. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  59. Xiang, S., Kang, G.W. and Liu, Y.Q. (2014), "A nth-order shear deformation theory for natural frequency of the functionally graded plates on elastic foundations", Compos. Struct., 111, 224-231. https://doi.org/10.1016/j.compstruct.2014.01.004.
  60. Zenkour, A.M. and Radwan, A.F. (2018), "Compressive study of functionally graded plates resting on Winkler-Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory", Arch. Civil Mech. Eng., 18(2), 645-658. https://doi.org10.1016/j.acme.2017.10.003.