DOI QR코드

DOI QR Code

ML-based prediction method for estimating vortex-induced vibration amplitude of steel tubes in tubular transmission towers

  • Jiahong Li (School of Civil Engineering, Chongqing University) ;
  • Tao Wang (School of Transportation Science and Engineering, Harbin Institute of Technology) ;
  • Zhengliang Li (School of Civil Engineering, Chongqing University)
  • Received : 2022.07.17
  • Accepted : 2024.04.01
  • Published : 2024.04.10

Abstract

The prediction of VIV amplitude is essential for the design and fatigue life estimation of steel tubes in tubular transmission towers. Limited to costly and time-consuming traditional experimental and computational fluid dynamics (CFD) methods, a machine learning (ML)-based method is proposed to efficiently predict the VIV amplitude of steel tubes in transmission towers. Firstly, by introducing the first-order mode shape to the two-dimensional CFD method, a simplified response analysis method (SRAM) is presented to calculate the VIV amplitude of steel tubes in transmission towers, which enables to build a dataset for training ML models. Then, by taking mass ratio M*, damping ratio ξ, and reduced velocity U* as the input variables, a Kriging-based prediction method (KPM) is further proposed to estimate the VIV amplitude of steel tubes in transmission towers by combining the SRAM with the Kriging-based ML model. Finally, the feasibility and effectiveness of the proposed methods are demonstrated by using three full-scale steel tubes with C-shaped, Cross-shaped, and Flange-plate joints, respectively. The results show that the SRAM can reasonably calculate the VIV amplitude, in which the relative errors of VIV maximum amplitude in three examples are less than 6%. Meanwhile, the KPM can well predict the VIV amplitude of steel tubes in transmission towers within the studied range of M*, ξ and U*. Particularly, the KPM presents an excellent capability in estimating the VIV maximum amplitude by using the reduced damping parameter SG.

Keywords

Acknowledgement

This work presented in this paper was fully supported by the Special Support of Chongqing Postdoctoral Research Project (Grant No.2022CQBSHBT3009), Chongqing Natural Science Foundation-Innovation Development Joint Foundation Project (Grant No. CSTB2023NSCQLZX0080) and the NSFC-JSPS China-Japan Scientific Cooperation Project (NSFC Grant No. 51611140123). The authors would like to express their gratitude for all supports.

References

  1. Al-Jamal, H. and Dalton, C. (2004), "Vortex induced vibrations using large eddy simulation at a moderate Reynolds number", J. Fluid. Struct., 19(1), 73-92. https://doi.org/10.1016/j.jfluidstructs.2003.10.005.
  2. Bearman, P.W. (1984), "Vortex shedding from oscillating bluff bodies", Ann. Rev. Fluid Mech., 16, 195-222. https://doi.org/10.1146/annurev.fl.16.010184.001211.
  3. Cheng, C., Meng, H., Li, Y.Z. and Zhang, G.T. (2021), "Deep learning based on PINN for solving 2 DOF vortex induced vibration of cylinder", Ocean Eng., 240, 109932. https://doi.org/10.1016/j.oceaneng.2021.109932.
  4. Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learn., 20(3), 273-297. https://doi.org/10.1023/A:1022627411411.
  5. Couckuyt, I., Dhaene, T. and Demeester, P. (2014), "ooDACE toolbox: a flexible object-oriented Kriging implementation", J. Mach. Learn. Res., 15, 3183-3186.
  6. Dai, H. and MacBeth, C. (1997), "Effects of learning parameters on learning procedure and performance of a BPNN", Neur. Network., 10(8), 1505-1521. https://doi.org/10.1016/S0893-6080(97)00014-2.
  7. Deng H.Z. and Zhao Z.F. (2017), "Numerical simulation of vortex-Induced vibration of steel tubular members in transmission tower", J. Tongji Univ., Nat. Sci., 45(01), 9-15. https://doi.org/10.11908/j.issn.0253-374x.2017.01.002. (in Chinese)
  8. Deng, H.Z., Jiang, Q., Li, F. and Wu, Y. (2011), "Vortex-induced vibration tests of circular cylinders connected with typical joints in transmission towers", J. Wind Eng. Ind. Aerodyn., 99(10), 1069-1078. https://doi.org/10.1016/j.jweia.2021.104678.
  9. DL/T 5486-2020 (2020), Technical Specification for the Design of Steel Supporting Structures of Overhead Transmission Line, China Electric Power Press, Beijing, China.
  10. Fu, X., Jiang, Y., Li, H.N., Li, J.X., Xie, W.P., Yang, L.D. and Zhang, J. (2021), "Vortex-induced vibration and countermeasure of a tubular transmission tower", Int. J. Struct. Stab. Dyn., 21(12), 2150163. https://doi.org/10.1142/S0219455421501637.
  11. Gutmann, H.M. (2001), "A radial basis function method for global optimization", J. Glob. Optim., 19(3), 201-227. https://doi.org/10.1023/A:1011255519438.
  12. Hu, G. and Kwok, K.C. (2020), "Predicting wind pressures around circular cylinders using machine learning techniques", J. Wind Eng. Ind. Aerodyn., 198, 104099. https://doi.org/10.1016/j.jweia.2020.104099.
  13. Huang, M.F., Zhang, B.Y., Guo, Y., Huan, R.H. and Lou, W.J. (2021), "Prediction and suppression of vortex-induced vibration for steel tubes with bolted joints in tubular transmission towers", J. Struct. Eng., 147(9), 04021128. https://doi.org/10.1061/(asce)st.1943-541x.0003100.
  14. Jiang, T., Shen, Z., Yang, M., Xu, L., Gan, L. and Cui, X. (2018), "A new model approach to predict the unloading rock slope displacement behavior based on monitoring data", Struct. Eng. Mech., 67(2), 105-113. https://doi.org/10.12989/sem.2018.67.2.105.
  15. Jin, X., Cheng, P., Chen, W.L. and Li, H. (2018), "Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder", Phys. Fluid., 30(4), 047105. https://doi.org/10.1063/1.5024595.
  16. Li, J., Li, Z. and Wang, T. (2023), "Prediction framework of vortex-induced vibration of steel tubes in transmission towers based on generalized wake oscillator model", Int. J. Struct. Stab. Dyn., 2450066, 23. https://doi.org/10.1142/S0219455424500664.
  17. Li, J., Wang, T., Li, Z., Lu, D. and Tan, Y. (2024), "PDEM-based uncertainty quantification framework of the coupled cross-flow and inline vortex-induced vibrations for flexible cylinders considering elastic boundaries", Ocean Eng., 294, 116713. https://doi.org/10.1016/j.oceaneng.2024.116713.
  18. Li, S., Laima, S. and Li, H. (2018), "Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression", J. Wind Eng. Ind. Aerodyn., 172, 196-211. https://doi.org/10.1016/j.jweia.2017.10.022.
  19. Nguyen, H.D., Bui Tien, T., De Roeck, G. and Abdel Wahab, M. (2021), "Damage detection in structures using modal curvatures gapped smoothing method and deep learning", Struct. Eng. Mech., 77(1), 47-56. https://doi.org/10.12989/sem.2021.77.1.047.
  20. Reich, Y. and Barai, S.V. (1999), "Evaluating machine learning models for engineering problems", Artif. Intell. Eng., 13(3), 257-272. https://doi.org/10.1016/S0954-1810(98)00021-1.
  21. Ren, F., Wang, C. and Tang, H. (2019), "Active control of vortex-induced vibration of a circular cylinder using machine learning", Phys. Fluid., 31(9), 093601. https://doi.org/10.1063/1.5115258.
  22. Sarpkaya, T. (2004), "A critical review of the intrinsic nature of vortex-induced vibrations", J. Fluid. Struct., 19(4), 389-447. https://doi.org/10.1016/j.jfluidstructs.2004.02.005.
  23. Skop, R.A. and Balasubramanian, S. (1997), "A new twist on an old model for vortex-excited vibrations", J. Fluid. Struct., 11(4), 395-412. https://doi.org/10.1006/jfls.1997.0085.
  24. Tang, Z., Li, Z. and Wang, T. (2022), "GPR-based prediction and uncertainty quantification for bearing capacity of steel tubular members considering semi-rigid connections in transmission towers", Eng. Fail. Anal., 142, 106854. https://doi.org/10.1016/j.engfailanal.2022.106854.
  25. Tang, Z., Li, Z., Wang, T., Lu, D. and Tan, Y. (2023), "PDEM-based multi-component and global reliability evaluation framework for steel tubular transmission towers with semi-rigid connections", Eng. Struct., 295, 116838. https://doi.org/10.1016/j.engstruct.2023.116838.
  26. Tang, Z., Wang, T. and Li, Z. (2024), "Probabilistic bearing capacity assessment for cross-bracings with semi-rigid connections in transmission towers", Struct. Eng. Mech., 89(3), 309-321. https://doi.org/10.12989/sem.2024.89.3.309.
  27. Thirumalaiselvi, A., Verma, M., Anandavalli, N. and Rajasankar, J. (2018), "Response prediction of laced steel-concrete composite beams using machine learning algorithms", Struct. Eng. Mech., 66(3), 399-409. https://doi.org/10.12989/sem.2018.66.3.399.
  28. Tu, X., Wu, Y., Li, Z. and Wang, Z. (2021), "Vortex induced vibration and its controlling of long span Cross-Rope Suspension transmission line with tension insulator", Struct. Eng. Mech., 78(1), 87-102. https://doi.org/10.12989/sem.2021.78.1.087.
  29. Vahedi, J., Ghasemi, M.R. and Miri, M. (2018). Structural reliability assessment using an enhanced adaptive Kriging method. Struct. Eng. Mech., 66(6), 677-691. https://doi.org/10.12989/sem.2018.66.6.677.
  30. Vickery, B.J. and Daly, A. (1984), "Wind tunnel modelling as a means of predicting the response of chimmeys to vortex shedding", Eng. Struct., 6(4), 363-368. https://doi.org/10.1016/0141-0296(84)90036-1.
  31. Williamson, C.H. and Govardhan, R. (2004), "Vortex-induced vibrations", Ann. Rev. Fluid Mech., 36(1), 413-455. https://doi.org/10.1146/annurev.fluid.36.050802.122128.
  32. Wong, E.W.C. (2018), "A simplified method to predict fatigue damage of TTR subjected to short-term VIV using artificial neural network", Adv. Eng. Softw., 126, 100-109. https://doi.org/10.1016/j.advengsoft.2018.09.011.
  33. Wu, J., Yin, D., Lie, H., Riemer-Sorensen, S., Saevik, S. and Triantafyllou, M. (2020), "Improved VIV response prediction using adaptive parameters and data clustering", J. Marine Sci. Eng., 8(2), 127. https://doi.org/10.3390/jmse8020127.
  34. Wu, T. and Kareem, A. (2012), "An overview of vortex-induced vibration (VIV) of bridge decks", Front. Struct. Civil Eng., 6(4), 335-347. https://doi.org/10.1007/s11709-012-0179-1.
  35. Wu, X., Ge, F. and Hong, Y. (2012), "A review of recent studies on vortex-induced vibrations of long slender cylinders", J. Fluid. Struct., 28, 292-308. https://doi.org/10.1016/j.jfluidstructs.2011.11.010.
  36. Zhang, D., Song, X., Deng, H., Hu, X. and Ma, X. (2021), "Experimental and numerical study on the aerodynamic characteristics of steel tubular transmission tower bodies under skew winds", J. Wind Eng. Ind. Aerodyn., 214, 104678. https://doi.org/10.1016/j.jweia.2021.104678.
  37. Zhou, S., Hua, X.G., Chen, Z.Q. and Chen, W. (2017), "Experimental investigation of correction factor for VIV amplitude of flexible bridges from an aeroelastic model and its 1: 1 section model", Eng. Struct., 141, 263-271. https://doi.org/10.1016/j.engstruct.2017.03.023.