DOI QR코드

DOI QR Code

Physiological and transcriptome analysis of acclimatory response to cold stress in marine red alga Pyropia yezoensis

  • Li-Hong Ma (College of Marine Life Sciences, Ocean University of China) ;
  • Lin Tian (College of Marine Life Sciences, Ocean University of China) ;
  • Yu-Qing Wang (Trier College of Sustainable Technology, Yantai University) ;
  • Cong-Ying Xie (College of Marine Life Sciences, Ocean University of China) ;
  • Guo-Ying Du (College of Marine Life Sciences, Ocean University of China)
  • Received : 2024.02.07
  • Accepted : 2024.03.07
  • Published : 2024.03.21

Abstract

Red macroalga Pyropia yezoensis is a high valuable cultivated marine crop. Its acclimation to cold stress is especially important for long cultivation period across winter in coasts of warm temperate zone in East Asia. In this study, the response of P. yezoensis thalli to low temperature was analyzed on physiology and transcriptome level, to explore its acclimation mechanism to cold stress. The results showed that the practical photosynthesis activity (indicated by ΦPSII and qP) was depressed and pigment allophycocyanin content was decreased during the cold stress of 48 h. However, the Fv/Fm and non-photochemical quenching increased significantly after 24 h, and the average growth rate of thalli also rebounded from 24 to 48 h, indicating a certain extent of acclimation to cold stress. On transcriptionally, the low temperature promoted the expression of differentially expressed genes (DEGs) related to carbohydrate metabolism and energy metabolism, while genes related to photosynthetic system were depressed. The increased expression of DEGs involved in ribosomal biogenesis and lipid metabolism which could accelerate protein synthesis and enhance the degree of fatty acid unsaturation, might help P. yezoensis thallus cells to cope with cold stress. Further co-expression network analysis revealed differential expression trends along with stress time, and corresponding hub genes play important roles in the systemic acquired acclimation to cold stress. This study provides basic mechanisms of P. yezoensis acclimation to cold temperature and may aid in exploration of functional genes for genetic breeding of economic macroalgae.

Keywords

Acknowledgement

This study was financially supported by National Key Research and Development Program of China (2023YFD2400101, 2022YFD2400105).

References

  1. Antikainen, M. & Pihakaski, S. 2010. Cold-induced changes in the polysome pattern and protein synthesis in winter rye (Secale cereale) leaves. Physiol. Plant. 89:111-116. doi.org/10.1111/j.1399-3054.1993.tb01793.x
  2. Aslam, M., Fakher, B., Ashraf, M. A., Cheng, Y., Wang, B. & Qin, Y. 2022. Plant low-temperature stress: signaling and response. Agronomy 12:702. doi.org/10.3390/agronomy12030702
  3. Aslamarz, A. A. & Vahdati, K. 2010. Stomatal density and ion leakage as indicators of cold hardiness in walnut. Acta Hortic. 861:321-324. doi.org/10.17660/ActaHortic.2010.861.44
  4. Bae, M. S., Cho, E. J., Choi, E.-Y. & Park, O. K. 2003. Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J. 36:652-663. doi.org/10.1046/j.1365-313X.2003.01907.x
  5. Calhoun, S., Bell, T. A. S., Dahlin, L. R., et al. 2021. A multiomic characterization of temperature stress in a halotolerant Scenedesmus strain for algal biotechnology. Commun. Biol. 4:333. doi.org/10.1038/s42003-021-01859-y
  6. Cao, X., Wang, H., Zang, X., et al. 2021. Changes in the photosynthetic pigment contents and transcription levels of phycoerythrin-related genes in three Gracilariopsis lemaneiformis strains under different light intensities. J. Ocean Univ. China 20:661-668. doi.org/10.1007/s11802-021-4616-4
  7. Ding, Y., Shi, Y. & Yang, S. 2019. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 222:1690-1704. doi.org/10.1111/nph.15696
  8. Dong, M., Zhang, X., Zhuang, Z., et al. 2012. Characterization of the LhcSR gene under light and temperature stress in the green alga Ulva linza. Plant Mol. Biol. Rep. 30:10-16. doi.org/10.1007/s11105-011-0311-8
  9. Du, G., Li, X., Wang, J., Che, S., Zhong, X. & Mao, Y. 2022. Discrepancy in photosynthetic responses of the red alga Pyropia yezoensis to dehydration stresses under exposure to desiccation, high salinity, and high mannitol concentration. Mar. Life Sci. Technol. 4:10-17. doi.org/10.1007/s42995-021-00115-w
  10. Ermilova, E. 2020. Cold stress response: an overview in Chlamydomonas. Front. Plant Sci. 11:569437. doi.org/10.3389/fpls.2020.569437
  11. Green, L. A. & Neefus, C. D. 2015. Effects of temperature, light level, photoperiod, and ammonium concentration on Pyropia leucosticta (Bangiales, Rhodophyta) from the Northwest Atlantic. J. Appl. Phycol. 27:1253-1261. doi.org/10.1007/s10811-014-0421-4
  12. Hang, R., Wang, Z., Deng, X., et al. 2018. Ribosomal RNA biogenesis and its response to chilling stress in Oryza sativa. Plant Physiol. 177:381-397. doi.org/10.1104/pp.17.01714
  13. He, B., Hou, L., Dong, M., et al. 2018. Transcriptome analysis in Haematococcus pluvialis: astaxanthin induction by high light with acetate and Fe2+. Int. J. Mol. Sci. 19:175. doi.org/10.3390/ijms19010175
  14. Huner, N. P. A., Oquist, G. & Sarhan, F. 1998. Energy balance and acclimation to light and cold. Trends Plant Sci. 3:224-230. doi.org/10.1016/S1360-1385(98)01248-5
  15. Kaur, M., Saini, K. C., Ojah, H., et al. 2022. Abiotic stress in algae: response, signaling and transgenic approaches. J. Appl. Phycol. 34:1843-1869. doi.org/10.1007/s10811-022-02746-7
  16. Li, B. & Dewey, C. N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. doi.org/10.1186/1471-2105-12-323
  17. Li, H., Liu, J., Zhang, L. & Pang, T. 2016. Effects of low temperature stress on the antioxidant system and photosynthetic apparatus of Kappaphycus alvarezii (Rhodophyta, Solieriaceae). Mar. Biol. Res. 12:1064-1077. doi.org/10.1080/17451000.2016.1232827
  18. Li, L., Peng, H., Tan, S., et al. 2020. Effects of early cold stress on gene expression in Chlamydomonas reinhardtii. Genomics 112:1128-1138. doi.org/10.1016/j.ygeno.2019.06.027
  19. Love, M. I., Huber, W. & Andres, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. doi.org/10.1186/s13059-014-0550-8
  20. Menegol, T., Diprat, A. B., Rodrigues, E. & Rech, R. 2017. Effect of temperature and nitrogen concentration on biomass composition of Heterochlorella luteoviridis. Food Sci. Technol. 37:28-37. doi.org/10.1590/1678-457x.13417
  21. Mittler, R. & Blumwald, E. 2015. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27:64-70. doi.org/10.1105/tpc.114.133090
  22. Monteiro, C. M. M., Li, H., Bischof, K., et al. 2019. Is geographical variation driving the transcriptomic responses to multiple stressors in the kelp Saccharina latissimi? BMC Plant Biol. 19:513. doi.org/10.1186/s12870-019-2124-0
  23. Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L. & Huner, N. P. A. 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. Rev. 70:222-252. doi.org/10.1128/MMBR.70.1.222-252.2006
  24. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5:621-628. doi.org/10.1038/nmeth.1226
  25. Qin, F., Zang, X., Shui, G. & Wang, Z. 2021. Transcriptome analysis of Gracilariopsis lemaneiformis at low temperature. J. Appl. Phycol. 33:4035-4050. doi.org/10.1007/s10811-021-02514-z
  26. Ren, X. Y. 2011. The effects of low temperature stress on the growth, physiology, and biochemistry of Phaeodactylum tricornutum and the cloning of its LEA gene. Ph.D. dissertation, Liaoning Normal University, Liaoning, China, pp. 89-92.
  27. Ruan, J., Dean, A. K. & Zhang, W. 2010. A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst. Biol. 4:8. doi.org/10.1186/1752-0509-4-8
  28. Shin, H., Hong, S.-J., Yoo, C., et al. 2016. Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae. Sci. Rep. 6:37770. doi.org/10.1038/srep37770
  29. Sun, P., Mao, Y., Li, G., et al. 2015. Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses. BMC Genomics 16:463. doi.org/10.1186/s12864-015-1586-1
  30. Szechynska-Hebda, M., Lewandowska, M. & Karpinski, S. 2017. Electrical signaling, photosynthesis and systemic acquired acclimation. Front. Physiol. 8:684. doi.org/10.3389/fphys.2017.00684
  31. Takahashi, M., Kumari, P., Li, C. & Mikami, K. 2020. Low temperature causes discoloration by repressing growth and nitrogen transporter gene expression in the edible red alga Pyropia yezoensis. Mar. Environ. Res. 159:105004. doi.org/10.1016/j.marenvres.2020.105004
  32. Tsai, Y.-Y., Ohashi, T., Wu, C.-C., et al. 2019. Delta-9 fatty acid desaturase overexpression enhanced lipid production and oleic acid content in Rhodosporidium toruloides for preferable yeast lipid production. J. Biosci. Bioeng. 127:430-440. doi.org/10.1016/j.jbiosc.2018.09.005
  33. Valledor, L., Furuhashi, T., Hanak, A.-M. & Weckwerth, W. 2013. Systemic cold stress adaptation of Chlamydomonas reinhardtii. Mol. Cell. Proteomics 12:2032-2047. doi.org/10.1074/mcp.M112.026765
  34. Wang, D., Yu, X., Xu, K., et al. 2020a. Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment. Nat. Commun. 11:4028. doi.org/10.1038/s41467-020-17689-1
  35. Wang, Y., Liu, X., Gao, H., et al. 2020b. Early stage adaptation of a mesophilic green alga to Antarctica: systematic increases in abundance of enzymes and LEA proteins. Mol. Biol. Evol. 37:849-863. doi.org/10.1093/molbev/msz273
  36. Watanabe, Y., Morikawa, T., Mine, T., Kawamura, Y., Nishihara, G. N. & Terada, R. 2017. Chronological change and the potential of recovery on the photosynthetic efficiency of Pyropia yezoensis f. narawaensis (Bangiales) during the sporelings frozen storage treatment in the Japanese Nori cultivation. Phycol. Res. 65:265-271. doi.org/10.1111/pre.12185
  37. Xie, C., Mao, X., Huang, J., et al. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39:W316-W322. doi.org/10.1093/nar/gkr483
  38. Xie, C. Y., Zhong, X. F., Wu, L., Zhang, X. Y. & Du, G. Y. 2023. Growth performance and photosynthetic physiological and biochemical responses of Neoporphyra yezoensis under low temperature stress. Period. Ocean Univ. China (in press).
  39. Yadav, S. K. 2010. Cold stress tolerance mechanisms in plants: a review. Agron. Sustain. Dev. 30:515-527. doi.org/10.1051/agro/2009050
  40. Zhang, T., Li, J., Ma, F., Lu, Q., Shen, Z. & Zhu, J. 2014. Study of photosynthetic characteristics of the Pyropia yezoensis thallus during the cultivation process. J. Appl. Phycol. 26:859-865. doi.org/10.1007/s10811-013-0157-6
  41. Zhang, Z., Qu, C., Yao, R., et al. 2019. The parallel molecular adaptations to the Antarctic cold environment in two psychrophilic green algae. Genome Biol. Evol. 11:1897-1908. doi.org/10.1093/gbe/evz104
  42. Zhang, Z., Qu, C., Zhang, K., et al. 2020. Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Curr. Biol. 30:3330-3341. doi.org/10.1016/j.cub.2020.06.029
  43. Zheng, Y., Xue, C., Chen, H., He, C. & Wang, Q. 2020. Lowtemperature adaptation of the snow alga Chlamydomonas nivalis is associated with the photosynthetic system regulatory process. Front. Microbiol. 11:1233. doi.org/10.3389/fmicb.2020.01233
  44. Zhong, X., Che, S., Xie, C., et al. 2023. Physiological response of red macroalgae Pyropia yezoensis (Bangiales, Rhodophyta) to light quality: a short-term adaptation. Algae 38:141-150. doi.org/10.4490/algae.2023.38.5.25
  45. Zhu, S., Gu, D., Lu, C., et al. 2022. Cold stress tolerance of the intertidal red alga Neoporphyra haitanensis. BMC Plant Biol. 22:114. doi.org/10.1186/s12870-022-03507-x
  46. Zou, D. & Gao, K. 2014. Temperature response of photosynthetic light- and carbon-use characteristics in the red seaweed Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta). J. Phycol. 50:366-375. doi.org/10.1111/jpy.12171