Acknowledgement
This study was financially supported by National Key Research and Development Program of China (2023YFD2400101, 2022YFD2400105).
References
- Antikainen, M. & Pihakaski, S. 2010. Cold-induced changes in the polysome pattern and protein synthesis in winter rye (Secale cereale) leaves. Physiol. Plant. 89:111-116. doi.org/10.1111/j.1399-3054.1993.tb01793.x
- Aslam, M., Fakher, B., Ashraf, M. A., Cheng, Y., Wang, B. & Qin, Y. 2022. Plant low-temperature stress: signaling and response. Agronomy 12:702. doi.org/10.3390/agronomy12030702
- Aslamarz, A. A. & Vahdati, K. 2010. Stomatal density and ion leakage as indicators of cold hardiness in walnut. Acta Hortic. 861:321-324. doi.org/10.17660/ActaHortic.2010.861.44
- Bae, M. S., Cho, E. J., Choi, E.-Y. & Park, O. K. 2003. Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J. 36:652-663. doi.org/10.1046/j.1365-313X.2003.01907.x
- Calhoun, S., Bell, T. A. S., Dahlin, L. R., et al. 2021. A multiomic characterization of temperature stress in a halotolerant Scenedesmus strain for algal biotechnology. Commun. Biol. 4:333. doi.org/10.1038/s42003-021-01859-y
- Cao, X., Wang, H., Zang, X., et al. 2021. Changes in the photosynthetic pigment contents and transcription levels of phycoerythrin-related genes in three Gracilariopsis lemaneiformis strains under different light intensities. J. Ocean Univ. China 20:661-668. doi.org/10.1007/s11802-021-4616-4
- Ding, Y., Shi, Y. & Yang, S. 2019. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 222:1690-1704. doi.org/10.1111/nph.15696
- Dong, M., Zhang, X., Zhuang, Z., et al. 2012. Characterization of the LhcSR gene under light and temperature stress in the green alga Ulva linza. Plant Mol. Biol. Rep. 30:10-16. doi.org/10.1007/s11105-011-0311-8
- Du, G., Li, X., Wang, J., Che, S., Zhong, X. & Mao, Y. 2022. Discrepancy in photosynthetic responses of the red alga Pyropia yezoensis to dehydration stresses under exposure to desiccation, high salinity, and high mannitol concentration. Mar. Life Sci. Technol. 4:10-17. doi.org/10.1007/s42995-021-00115-w
- Ermilova, E. 2020. Cold stress response: an overview in Chlamydomonas. Front. Plant Sci. 11:569437. doi.org/10.3389/fpls.2020.569437
- Green, L. A. & Neefus, C. D. 2015. Effects of temperature, light level, photoperiod, and ammonium concentration on Pyropia leucosticta (Bangiales, Rhodophyta) from the Northwest Atlantic. J. Appl. Phycol. 27:1253-1261. doi.org/10.1007/s10811-014-0421-4
- Hang, R., Wang, Z., Deng, X., et al. 2018. Ribosomal RNA biogenesis and its response to chilling stress in Oryza sativa. Plant Physiol. 177:381-397. doi.org/10.1104/pp.17.01714
- He, B., Hou, L., Dong, M., et al. 2018. Transcriptome analysis in Haematococcus pluvialis: astaxanthin induction by high light with acetate and Fe2+. Int. J. Mol. Sci. 19:175. doi.org/10.3390/ijms19010175
- Huner, N. P. A., Oquist, G. & Sarhan, F. 1998. Energy balance and acclimation to light and cold. Trends Plant Sci. 3:224-230. doi.org/10.1016/S1360-1385(98)01248-5
- Kaur, M., Saini, K. C., Ojah, H., et al. 2022. Abiotic stress in algae: response, signaling and transgenic approaches. J. Appl. Phycol. 34:1843-1869. doi.org/10.1007/s10811-022-02746-7
- Li, B. & Dewey, C. N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. doi.org/10.1186/1471-2105-12-323
- Li, H., Liu, J., Zhang, L. & Pang, T. 2016. Effects of low temperature stress on the antioxidant system and photosynthetic apparatus of Kappaphycus alvarezii (Rhodophyta, Solieriaceae). Mar. Biol. Res. 12:1064-1077. doi.org/10.1080/17451000.2016.1232827
- Li, L., Peng, H., Tan, S., et al. 2020. Effects of early cold stress on gene expression in Chlamydomonas reinhardtii. Genomics 112:1128-1138. doi.org/10.1016/j.ygeno.2019.06.027
- Love, M. I., Huber, W. & Andres, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. doi.org/10.1186/s13059-014-0550-8
- Menegol, T., Diprat, A. B., Rodrigues, E. & Rech, R. 2017. Effect of temperature and nitrogen concentration on biomass composition of Heterochlorella luteoviridis. Food Sci. Technol. 37:28-37. doi.org/10.1590/1678-457x.13417
- Mittler, R. & Blumwald, E. 2015. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27:64-70. doi.org/10.1105/tpc.114.133090
- Monteiro, C. M. M., Li, H., Bischof, K., et al. 2019. Is geographical variation driving the transcriptomic responses to multiple stressors in the kelp Saccharina latissimi? BMC Plant Biol. 19:513. doi.org/10.1186/s12870-019-2124-0
- Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L. & Huner, N. P. A. 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. Rev. 70:222-252. doi.org/10.1128/MMBR.70.1.222-252.2006
- Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5:621-628. doi.org/10.1038/nmeth.1226
- Qin, F., Zang, X., Shui, G. & Wang, Z. 2021. Transcriptome analysis of Gracilariopsis lemaneiformis at low temperature. J. Appl. Phycol. 33:4035-4050. doi.org/10.1007/s10811-021-02514-z
- Ren, X. Y. 2011. The effects of low temperature stress on the growth, physiology, and biochemistry of Phaeodactylum tricornutum and the cloning of its LEA gene. Ph.D. dissertation, Liaoning Normal University, Liaoning, China, pp. 89-92.
- Ruan, J., Dean, A. K. & Zhang, W. 2010. A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst. Biol. 4:8. doi.org/10.1186/1752-0509-4-8
- Shin, H., Hong, S.-J., Yoo, C., et al. 2016. Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae. Sci. Rep. 6:37770. doi.org/10.1038/srep37770
- Sun, P., Mao, Y., Li, G., et al. 2015. Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses. BMC Genomics 16:463. doi.org/10.1186/s12864-015-1586-1
- Szechynska-Hebda, M., Lewandowska, M. & Karpinski, S. 2017. Electrical signaling, photosynthesis and systemic acquired acclimation. Front. Physiol. 8:684. doi.org/10.3389/fphys.2017.00684
- Takahashi, M., Kumari, P., Li, C. & Mikami, K. 2020. Low temperature causes discoloration by repressing growth and nitrogen transporter gene expression in the edible red alga Pyropia yezoensis. Mar. Environ. Res. 159:105004. doi.org/10.1016/j.marenvres.2020.105004
- Tsai, Y.-Y., Ohashi, T., Wu, C.-C., et al. 2019. Delta-9 fatty acid desaturase overexpression enhanced lipid production and oleic acid content in Rhodosporidium toruloides for preferable yeast lipid production. J. Biosci. Bioeng. 127:430-440. doi.org/10.1016/j.jbiosc.2018.09.005
- Valledor, L., Furuhashi, T., Hanak, A.-M. & Weckwerth, W. 2013. Systemic cold stress adaptation of Chlamydomonas reinhardtii. Mol. Cell. Proteomics 12:2032-2047. doi.org/10.1074/mcp.M112.026765
- Wang, D., Yu, X., Xu, K., et al. 2020a. Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment. Nat. Commun. 11:4028. doi.org/10.1038/s41467-020-17689-1
- Wang, Y., Liu, X., Gao, H., et al. 2020b. Early stage adaptation of a mesophilic green alga to Antarctica: systematic increases in abundance of enzymes and LEA proteins. Mol. Biol. Evol. 37:849-863. doi.org/10.1093/molbev/msz273
- Watanabe, Y., Morikawa, T., Mine, T., Kawamura, Y., Nishihara, G. N. & Terada, R. 2017. Chronological change and the potential of recovery on the photosynthetic efficiency of Pyropia yezoensis f. narawaensis (Bangiales) during the sporelings frozen storage treatment in the Japanese Nori cultivation. Phycol. Res. 65:265-271. doi.org/10.1111/pre.12185
- Xie, C., Mao, X., Huang, J., et al. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39:W316-W322. doi.org/10.1093/nar/gkr483
- Xie, C. Y., Zhong, X. F., Wu, L., Zhang, X. Y. & Du, G. Y. 2023. Growth performance and photosynthetic physiological and biochemical responses of Neoporphyra yezoensis under low temperature stress. Period. Ocean Univ. China (in press).
- Yadav, S. K. 2010. Cold stress tolerance mechanisms in plants: a review. Agron. Sustain. Dev. 30:515-527. doi.org/10.1051/agro/2009050
- Zhang, T., Li, J., Ma, F., Lu, Q., Shen, Z. & Zhu, J. 2014. Study of photosynthetic characteristics of the Pyropia yezoensis thallus during the cultivation process. J. Appl. Phycol. 26:859-865. doi.org/10.1007/s10811-013-0157-6
- Zhang, Z., Qu, C., Yao, R., et al. 2019. The parallel molecular adaptations to the Antarctic cold environment in two psychrophilic green algae. Genome Biol. Evol. 11:1897-1908. doi.org/10.1093/gbe/evz104
- Zhang, Z., Qu, C., Zhang, K., et al. 2020. Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Curr. Biol. 30:3330-3341. doi.org/10.1016/j.cub.2020.06.029
- Zheng, Y., Xue, C., Chen, H., He, C. & Wang, Q. 2020. Lowtemperature adaptation of the snow alga Chlamydomonas nivalis is associated with the photosynthetic system regulatory process. Front. Microbiol. 11:1233. doi.org/10.3389/fmicb.2020.01233
- Zhong, X., Che, S., Xie, C., et al. 2023. Physiological response of red macroalgae Pyropia yezoensis (Bangiales, Rhodophyta) to light quality: a short-term adaptation. Algae 38:141-150. doi.org/10.4490/algae.2023.38.5.25
- Zhu, S., Gu, D., Lu, C., et al. 2022. Cold stress tolerance of the intertidal red alga Neoporphyra haitanensis. BMC Plant Biol. 22:114. doi.org/10.1186/s12870-022-03507-x
- Zou, D. & Gao, K. 2014. Temperature response of photosynthetic light- and carbon-use characteristics in the red seaweed Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta). J. Phycol. 50:366-375. doi.org/10.1111/jpy.12171