DOI QR코드

DOI QR Code

A surface chemical analysis strategy for the microstructural changes in a CuAgZrCr alloy cast under oxidation conditions

  • Ernesto G. Maffia (Departamento de Mecanica de la Facultad de Ingenieria, Universidad Nacional de La Plata) ;
  • Mercedes Munoz (CINDECA-CCT- CONICET-CIC- Universidad Nacional de La Plata) ;
  • Pablo A. Fetsis (CINDECA-CCT- CONICET-CIC- Universidad Nacional de La Plata) ;
  • Carmen I. Cabello (CINDECA-CCT- CONICET-CIC- Universidad Nacional de La Plata) ;
  • Delia Gazzoli (Dipartimento di Chimica, ) ;
  • Aldo A. Rubert (Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata CONICET)
  • Received : 2022.12.12
  • Accepted : 2024.01.12
  • Published : 2024.04.25

Abstract

The aim of this work was to determine the behavior of alloy elements and compounds formed during solidification in the manufacturing process of the CuAgZrCr alloy under an oxidizing environment. Bulk and surface analysis techniques, such as Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), Raman and X-ray diffraction (XRD) were used to characterize the phases obtained in the solidification process. In order to focus the analysis on the on grain boundary interface, partial removal of the matrix phase by acid attack was performed. The compositional differences obtained by SEM-EDX, Raman and XPS on post-manufacturing materials allowed us to conclude that the composition of grain boundaries of the alloy is directly influenced by the oxidizing environment of alloy manufacturing.

Keywords

Acknowledgement

The authors wish to thank to Universidad Nacional de La Plata (UNLP) of Argentina I207 Project for the financial support provided for the realization of this research work. The authors wish to thank the research unit PROINTEC I&D of Facultad de Ingenieria of La Plata, UNLP for facilitating the use of their equipment and the material used in this work. The authors thank Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET).

References

  1. Abbaschian, R. and Reed-Hill, R.E. (2008), Physical Metallurgy Principles, Course Technology, Boston, MA, USA.
  2. Azdad, Z., Marot, L., Moser, L., Steiner, R. and Meyer, E. (2018), "Valence band behaviour of zirconium oxide, Photoelectron and Auger spectroscopy study", Sci. Rep., 8(1), 16251. https://doi.org/10.1038/s41598-018-34570-w.
  3. Briggs, D. and Seah, M.P. (1990), Practical Surface Analysis Volume 1 -Auger and X-Ray Photoelectron Spectroscopy, 2nd Edition, John Wiley & Sons Ltd, Chichester, UK.
  4. Gazzoli, D., Mattei, G. and Valigi, M. (2007), "Raman and X-ray investigations of the incorporation of Ca2+ and Cd2+ in the ZrO2 structure", J. Raman Spectrosc., 38, 824-831. https://doi.org/10.1002/JRS.1708.
  5. Haasen, P. (1996), "Mechanical properties of solid solutions", Physical Metallurgy, 4th Edition, Elsevier, Amsterdam, Netherlands.
  6. Jia, S.G., Ning, X.M., Liu, P., Zheng, M.S. and Zhou, G.S. (2009), "Age hardening characteristics of Cu-AgZr alloy", Met. Mater. Int., 15, 555-558. https://doi.org/10.1007/s12540-009-0555-0.
  7. Karle, S., Rogalla, D., Ludwig, A., Becker, H.W., Wieck, A.D., Grafen, M., Ostendorf, A. and Devi, A. (2017), "Synthesis and evaluation of new copper ketoiminate precursors for a facile and additive-free solution-based approach to nanoscale copper oxide thin films", Dalt. Trans., 46(8), 2670-2679. https://doi.org/10.1039/C6DT04399B.
  8. Krishna, S.C., Gangwar, N.K., Jha, A.K., Pant, B. and George, K.M. (2014), "Properties and strengthening mechanisms in cold rolled and aged Cu-3Ag-0.5Zr alloy", Metallogr. Microstruct. Anal., 34(3), 323-327. https://doi.org/10.1007/S13632-014-0147-3.
  9. Krishna, S.C., Tharian, K.T., Pant, B. and Kottada, R.S. (2013), "Microstructure and mechanical properties of Cu-Ag-Zr alloy", J. Mater. Eng. Perform., 22, 3884-3889. https://doi.org/10.1007/s11665-013-0659-z.
  10. Lin, J. and Meng, L. (2008), "Effect of aging treatment on microstructure and mechanical properties of CuAg alloys", J. Alloys Compd., 454, 150-155. https://doi.org/10.1016/J.JALLCOM.2006.12.073.
  11. Liu, J.B., Zhang, L., Dong, A.P., Wang, L.T., Zeng, Y.W. and Meng, L. (2012), "Effects of Cr and Zr additions on the microstructure and properties of Cu-6 wt.% Ag alloys", Mater. Sci. Eng. A, 532, 331-338. https://doi.org/10.1016/J.MSEA.2011.10.099.
  12. Ma, Y., Zhou, X., Huang, W., Thompson, G.E., Zhang, X., Luo, C. and Sun, Z. (2015), "Localized corrosion in AA2099-T83 aluminum-lithium alloy: The role of intermetallic particles", Mater. Chem. Phys., 161, 201-210. https://doi.org/10.1016/J.MATCHEMPHYS.2015.05.037.
  13. Martina, I., Wiesinger, R., Jembrih-Simbuerger, D. and Schreiner, M. (2012), "Micro-Raman characterisation of silver corrosion products", E Preserv. Sci., 9, 1-8.
  14. Morant, C., Sanz, J.M., Galan, L., Soriano, L. and Rueda, F. (1989), "An XPS study of the interaction of oxygen with zirconium", Surf. Sci., 218, 331-345. https://doi.org/10.1016/0039-6028(89)90156-8.
  15. Perepezko, P.R. and Subramanian, J.H. (1992), ASM Handbook Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, OH, USA.
  16. Ravi Chandra Raju, N., Jagadeesh Kumar, K. and Subrahmanyam, A. (2009), "Physical properties of silver oxide thin films by pulsed laser deposition: Effect of oxygen pressure during growth", J. Phys. D: Appl. Phys., 42(13), 135411. https://doi.org/10.1088/0022-3727/42/13/135411.
  17. Scherrer, P. (1918), "Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen", Nach Ges Wiss Gottingen, 2, 8-100.
  18. Tian, W., Bi, L., Ma, F. and Du, J. (2018), "Effect of Zr on as-cast microstructure and properties of Cu-Cr alloy", Vacuum, 149, 238-247. https://doi.org/10.1016/J.VACUUM.2017.12.011.
  19. Tobin, J.P., Hirschwald, W.H. and Cunningham, J. (1983), "XPS and XAES studies of transient enhancement of Cu1 at CuO surfaces during vacuum outgassing", Appl. Surf. Sci., 16, 441-452. https://doi.org/10.1016/0378-5963(83)90085-5.
  20. Van Ooij, W.J. (1977), "Surface composition, oxidation and sulfidation of cold-worked brass and brass-coated steel wire as studied by x-ray photoelectron spectroscopy I. Surface composition of commercial cold-worked brass", Surf. Technol., 6, 1-18. https://doi.org/10.1016/0376-4583(77)90019-X.
  21. Waterhouse, G.I.N., Bowmaker, G.A. and Metson, J.B. (2001), "The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study", Phys. Chem. Chem. Phys., 3, 3838-3845. https://doi.org/10.1039/B103226G.
  22. Waterhouse, G.I.N., Bowmaker, G.A. and Metson, J.B. (2003), "Oxygen chemisorption on an electrolytic silver catalyst: a combined TPD and Raman spectroscopic study", Appl. Surf. Sci., 214, 36-51. https://doi.org/10.1016/S0169-4332(03)00350-7.
  23. Wu, X., Wang, R., Peng, C., Feng, Y. and Cai, Z. (2019), "Effects of annealing on microstructure and mechanical properties of rapidly solidified Cu-3 wt% Ag-1 wt% Zr", Mater. Sci. Eng. A, 739, 357-366. https://doi.org/10.1016/J.MSEA.2018.10.062.
  24. Wu, Z., Hu, J., Xin, Z., Qin, L., Jia, Y. and Jiang, Y. (2023), "Microstructure and properties of Cu-Zn-Cr-Zr alloy treated by multistage thermo-mechanical treatment", Mater. Sci. Eng. A, 870, 144679. https://doi.org/10.1016/j.msea.2023.144679.
  25. Xu, J.F., Ji, W., Shen, Z.X., Li, W.S., Tang, S.H., Ye, X.R., Jia, D.Z. and Xin, X.Q. (1999), "Raman spectra of CuO nanocrystals", J. Raman Spectrosc., 30(5), 413-415. https://doi.org/10.1002/(SICI)1097-4555(199905)30:5<413::AID-JRS387>3.0.CO;2-N.
  26. Zhao, Q., Liu, H., Wu, C., Li, N., Jiang, Y. and Yi, D. (2018), "Preferential oxidation of intermetallic compounds in Ag-2Sn-4La alloy", Corros. Sci., 143, 177-186. https://doi.org/10.1016/J.CORSCI.2018.08.017.