DOI QR코드

DOI QR Code

Effect of NCO/OH ratio and binder content with micro-AP on HTPB/AP/Al-based propellants mechanical properties

  • Zulfam Adnan (School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia) ;
  • Nurul Musfirah Mazlan (School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia)
  • 투고 : 2023.01.06
  • 심사 : 2023.10.06
  • 발행 : 2024.04.25

초록

This study evaluates the ratio of Toluene di-isocyanate (TDI) functional group isocyanate (NCO) to the binder functional hydroxyl group (OH) in HTPB/AP/Al-based propellants on their mechanical properties, flow rate, and viscosity to determine the limitations of NCO/OH in the composition of solid propellants. The propellants consisted of hydroxyl-terminated polybutadiene (HTPB) polyurethane (PU), aluminum (Al) and tri-modal ammonium perchlorate (AP). The tri-modal AP consisted of 30% of coarse AP, 30% of medium AP, and 8% of fine AP. The ratio of NCO/OH varies from 0.73 to 0.85, with two binder percentages of 10.5% and 12%. An increase in NCO/OH ratio with 10.5% binder provided 20%, 95%, and 8 to 9% increments in UTS, modulus, and hardness, respectively. However, the propellant elongation, density, and flow rate decreased by 170%, 0.2%, and 11-12%, respectively. Viscosity increased 20% based on initial hour reading. The 12% binder provides 27%, 47%, and 5~6% an increment of UTS, modulus and hardness respectively. However, the propellant elongation, density, and flow rate decreased by 47%, 0.17% and 27%, respectively. The viscosity increased 30% based on initial hour reading. This study suggests the NCO/OH value of 0.77 and 10.5~11% binder content in propellant based on the mechanical properties, flow rate, and viscosity for better processing and pot life.

키워드

과제정보

The authors would like to acknowledge Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme (FRGS/1/2023/TK04/USM/03/1) and USM Gra-ASSIST for supporting this research work.

참고문헌

  1. Abdillah, L.A., Restasari, A., Hartaya, K. and Budiman, Y. (2020), "The selection of composite solid propellant process condition based on flow characteristics of propellant slurry", AIP Conf. Proc., 2226, 040010. https://doi.org/10.1063/5.0002342.
  2. Asghar, M.A., Qamar, I., Hassan, A. and Alvi, M.A. (2019), "Rheokinetic analysis of htpb-Tdi based polyurethane binder system", 6th International Conference on Aerospace Science and Engineering, ICASE 2019, Islamabad, Pakistan, November.
  3. Chaturvedi, S. and Dave, P.N. (2019), "Solid propellants: AP/HTPB composite propellants", Arab. J. Chem., 12(8), 2061-2068. https://doi.org/10.1016/j.arabjc.2014.12.033.
  4. Chen, J.K. and Brill, T.B. (1991), "Chemistry and kinetics of hydroxyl-terminated polybutadiene (HTPB) and diisocyanate-HTPB polymers during slow decomposition and combustion-like conditions", Combust. Flame, 87(3-4), 217-232. https://doi.org/10.1016/0010-2180(91)90109-O.
  5. Chen, T., Wang, X., Chen, G., Wang, J., Li, S. and Geng, T. (2023), "Progress in experimental research on mechanical behavior of composite solid propellants", Acad. J. Sci. Technol., 7(1), 2771-3032. https://doi.org/10.54097/ajst.v7i1.10986.
  6. Chen, X., Lai, J., Chang, X.L., Zhang, Y., Zhang, L. and Wang, C. (2017), "Compressive mechanical properties of HTPB propellant at low temperatures and high strain rates", Results Phys., 7, 4079-4084. https://doi.org/10.1016/j.rinp.2017.10.034.
  7. Christiansen, A.G., Layton, L.H. and Carpenter, R.L. (1981), "HTPB propellant aging", J. Spacecr. Rockets, 18(3), 211-215. https://doi.org/10.2514/3.57807.
  8. Gligorijevic, N.I., Rodic, V.Z., Zivkovic, S.Z., Pavkovic, B.M., Nikolic, M.M., Kozomara, S.M. and Subotic, S.D. (2016), "Mechanical characterization of composite solid rocket propellant based on hydroxyl-terminated polybutadiene", Chem. Indust., 70(5), 581-594. https://doi.org/10.2298/HEMIND150217067G.
  9. Guo, J., Chai, T., Liu, Y., Cui, J., Ma, H., Jing, S., ... and Ren, X. (2018), "Kinetic research on the curing reaction of hydroxyl-terminated polybutadiene based polyurethane binder system via FT-IR measurements", Coat., 8(5), 1-9. https://doi.org/10.3390/coatings8050175.
  10. Hocaoglu, O., Pekel, F. and Ozkar, S. (2001), "Aging of HTPB/AP-based composite solid propellants, depending on the NCO/OH and triol/diol ratios", J. Appl. Polym. Sci., 79(6), 959-964. https://doi.org/10.1002/1097-4628(20010207)79:6<959::aid-app10>3.0.co,2-g.
  11. Ke-Xi, Y., Ze-Ming, T. and Guo-Juan, W. (1986), "Viscosity prediction of composite solid propellant slurry", Prop. Explos. Pyrotech., 11(6), 167-169. https://doi.org/10.1002/prep.19860110603.
  12. Kim, S., Kim, M. and Sung, J.S. (2022), "Exposure of toluene diisocyanate induces DUSP6 and p53 through activation of TRPA1 receptor", Int. J. Molecul. Sci., 23(1), 1-15. https://doi.org/10.3390/ijms23010517.
  13. Lv, X., Xu, J., Xu, R., Xie, W., Wasiullah, Q. and Yan, Q.L. (2023), "The effect of Al/oxidizers interfacial structure on the mechanical properties of composite propellants", Polym. Test., 126, 108167. https://doi.org/10.1016/j.polymertesting.2023.108167.
  14. Mahanta, A.K., Goyal, M. and Pathak, D.D. (2010), "Rheokinetic analysis of hydroxy terminated polybutadiene based solid propellant slurry", J. Chem., 7(1), 171-179. https://doi.org/10.1155/2010/750393.
  15. Nagata, H., Nakayama, H., Watanabe, M., Wakita, M. and Totani, T. (2014), "Accuracy and applicable range of a reconstruction technique for hybrid rockets", Adv. Aircr. Spacecr. Sci., 1(3), 273-289. https://doi.org/10.12989/aas.2014.1.3.273.
  16. Neviere, R. and Tixier, L. (2009), "Fracture of case bonded grains in cold pressurization motors tests", 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Denver, CO, August.
  17. NourEldin, A.F., Adel, W.M., Attai, Y.A. and Ismail, M.A. (2020), "An experimental study on mechanical and ballistic characteristics of different HTPB composite propellant formulations", 19th International Conference on Applied Mechanics and Mechanical Engineering, Cairo, Egypt, April.
  18. Ou, Y., Sun, Y. and Jiao, Q. (2018), "Properties related to linear and branched network structure of hydroxyl terminated polybutadiene", e Polym., 18(3), 267-274. https://doi.org/10.1515/epoly-2017-0223.
  19. Pimont, L.J. (2019), "Study on the mechanical properties of solid composite propellant used as a gas generator", J. Aerosp., 11, 7-10. https://doi.org/10.5028/jatm.etmq.65.
  20. Quagliano Amado, J.C., Ross, P.G., Mattos Silva Murakami, L. and Narciso Dutra, J.C. (2022), "Properties of hydroxyl-terminal polybutadiene (HTPB) and its use as a liner and binder for composite propellants: A review of recent advances", Propellants Explos. Pyrotech., 47(5), e202100283. https://doi.org/10.1002/prep.202100283.
  21. Saito, Y., Yokoi, T., Neumann, L., Yasukochi, H., Soeda, K., Totani, T., ... and Nagata, H. (2017), "Investigation of axial-injection end-burning hybrid rocket motor regression", Adv. Aircr. Spacecr. Sci., 4(3), 281-296. https://doi.org/10.12989/aas.2017.4.3.281.
  22. Sekkar, V. and Raunija, T.S.K. (2015), "Hydroxyl-terminated polybutadiene-based polyurethane networks as solid propellant binder-state of the art", J. Propuls. Power, 31(1), 16-35. https://doi.org/10.2514/1.B35384.
  23. Wang, Z.J. and Qiang, H.F. (2022), "Mechanical properties of thermal aged HTPB composite solid propellant under confining pressure", Defence Technol., 18(4), 618-625. https://doi.org/10.1016/j.dt.2021.06.014.
  24. Yaacob, I.N., Asli, A.F., Norkhairunnisa, M., Ahmad, K.A., Ismail, O., Salleh, N.A. and Shahedi, S. (2023), "A review on viscoelastic behaviour of plasticizers in ap/al/htpb based composite solid propellant", Mater. Today: Proc., 2023, 1. https://doi.org/10.1016/j.matpr.2023.01.176.
  25. Zhang, J., Shi, L., Luo, P. and Zhou, J. (2023), "Mechanical properties and deformation behaviors of the hydroxyl-terminated polybutadiene and ammonium perchlorate interface by molecular dynamics simulation", Comput. Mater. Sci., 221, 112077. https://doi.org/10.1016/j.commatsci.2023.112077.