DOI QR코드

DOI QR Code

Temperature and leaching effects of zeolite-X derived from kaolin

  • Henry E. Mgbemere (Department of Metallurgical and Materials Engineering, University of Lagos) ;
  • Henry Ovri (Experimental Materials Mechanics, Institute of Materials Research) ;
  • Anna-Lisa Sargent (Department of Nanotechnology, Institute of Materials Research)
  • Received : 2021.11.24
  • Accepted : 2023.07.17
  • Published : 2024.04.25

Abstract

Zeolites are microporous materials that find applications in different fields due to their numerous interesting properties. This research investigated the effect of leaching on unheated Ifon kaolin in dilute hydrochloric acid and sulphuric acid. The hydrothermal method synthesized zeolite-X type, and the resulting sample was characterized using different techniques. The silica/alumina ratio in the synthesized sample was approximately 5.6, while Infrared spectra confirmed that the synthesized material was Zeolite-X. Based on the X-ray diffraction patterns, other phases were also formed in addition to zeolite-X crystals. Thermogravimetry results indicated that the synthesized zeolite was relatively stable below 500℃, so its weight loss was only 13% after heating to about 200℃. A differential thermal analyzer confirmed this amount of weight loss, and endothermic and exothermic reactions were also observed for the samples calcined respectively at 700 and 900℃. Based on Brunauer-Emmett-Teller (BET) analyses, samples at 700℃ showed slower adsorption-desorption isotherms, pore volume, and sizes than those at 900℃. These results have shown that leaching and calcination temperature significantly affect the type of zeolite produced.

Keywords

Acknowledgement

The authors thank Dr. Mauricio Schieda at the Helmholtz Zentrum Hereon for access and support with the BET measurements. The authors have no relevant financial or non-financial interests to disclose for the paper.

References

  1. Abdullahi, T., Harun, Z. and Othman, M.H.D. (2017), "A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process", Adv. Powd. Technol., 28, 1827-1840. http://doi.org/10.1016/j.apt.2017.04.028.
  2. Adeoye, J.B., Omoleye, J.A., Ojewumi, M.E. and Babalola, R. (2017), "Synthesis of zeolite Y from kaolin Using novel method of dealumination", Int. J. Appl. Eng. Res., 12(5), 755-760.
  3. Alaba, P.A., Sani, Y.M. and Daud, W.M.A.W. (2015), "Synthesis and characterization of hierarchical nanoporous HY zeolites from acid-activated kaolin", Chin. J. Catalys., 36, 1846-1851. https://doi.org/10.1016/S1872-2067(15)60962-7.
  4. Alaba, P.A., Sani, Y.M., Mohammed, I.Y., Abakr, Y.A. and Daud, W.M.A.W. (2017), "Synthesis of hierarchical nanoporous HY zeolites from activated kaolin, a central composite design optimization study", Adv. Powd. Technol., 28, 1399-1410. https://doi.org/10.1016/j.apt.2017.03.008.
  5. Andrade, F.R.D.D., Yogi, M.T.A.G., Gomes, E.B. and Shinzato, M.C. (2020), "Extent of zeolite synthesis via alkaline fusion from tailings dam sediments", Environ. Earth Sci., 79, 371-379. https://doi.org/10.1007/s12665-020-09118-9.
  6. Atta, A.Y., Ajayi, O.A. and Adefila, S.S. (2007), "Synthesis of faujasite zeolites from kankara kaolin clay", J. Appl. Sci. Res., 3(10), 1017-1021.
  7. Chen, D., Hu, X., Shi, L., Cui, Q., Wang, H. and Yao, H. (2012), "Synthesis and characterization of zeolite X from lithium slag", Appl. Clay Sci., 59-60, 148-151. https://doi.org/10.1016/j.clay.2012.02.017.
  8. Chen, J. and Lu, X. (2018), "Synthesis and characterization of zeolites NaA and NaX from coal gangue", J. Mater. Cycles Waste Manag., 20, 489-495. https://doi.org/10.1007/s10163-017-0605-5.
  9. Chouafa, M., Idres, A., Bouhedja, A. and Talhi, K. (2015), "Chemical treatment of kaolin. Case study of kaolin from the Tamazert-Jijel Mine", Min. Sci., 22, 171-180. https://doi.org/10.5277/msc152214.
  10. Georgiev, D., Bogdanov, B., Markovska, I. and Hristov, Y. (2013), "A study of the synthesis and structure of zeolite NaX", J. Chem. Technol. Metall., 48(2), 168-173.
  11. Hartanto, D., Iqbal, R.M., Shahbihi, W.E., Santoso, E., Fabsuri, H. and Iryani, A. (2017), "Effect of H2O/SiO2 molar ratio on direct synthesis of ZSM-5 from Bangkok's kaolin without pretreatment", Malay. J. Fund. Appl. Sci., 13(4), 817-820. https://doi.org/10.11113/mjfas.v13n4.916.
  12. Iftitahiyah, V.N., Prasetyoko, D., Nur, H. and Bahruji, H. (2018), "Synthesis and characterization of zeolite NaX from Bangka Belitung Kaolin as alternative precursor", Malay. J. Fund. Appl. Sci., 14(4), 414-418. https://doi.org/10.11113/mjfas.v14n4.964.
  13. Khaleque, A., Alam, M.M., Hoque, M., Mondal, S., Haider, J.B., Xu, B., Johir, M.A.H., Karmakar, A.K., Zhou, J.L., Ahmed, M.B. and Moni, M.A. (2020), "Zeolite synthesis from low-cost materials and environmental applications: A review", Environ. Adv., 2, 100019. https://doi.org/10.1016/j.envadv.2020.100019.
  14. Khalifah, S.N., Aini, Z.N., Hayati, E.K., Aini, N. and Prasetyo, A. (2018), "Synthesis and characterization of mesoporous NaY zeolite from natural Blitar's kaolin", International Conference on Advanced Materials for Better Future Surakarta, Indonesia 2017, Surakarta, Indonesia, September.
  15. Kirdeciler, S.K. and Akata, B. (2020), "One pot fusion route for the synthesis of zeolite 4A using kaolin", Adv. Powd. Technol., 31, 4336-4343. https://doi.org/10.1016/j.apt.2020.09.012.
  16. Krol, M. (2020), "Natural vs. synthetic zeolites", Crystals, 10, 621-628. https://doi.org/10.3390/cryst10070622.
  17. Li, J., Corma, A. and Yu, J. (2013), "Synthesis of new zeolite structures", Chem. Soc. Rev., 44, 7112-7127. https://doi.org/10.1039/C5CS00023H.
  18. Ma, Y.K., Rigolet, S., Michelin, L., Paillaud, J.L., Mintova, S., Khoerunnisa, F., Daou T.J. and Ng, EP (2021), "Facile and fast determination of Si/Al ratio of zeolites using FTIR spectroscopy technique", Micropor. Mesopor. Mater., 311, 110683. https://doi.org/10.1016/j.micromeso.2020.110683.
  19. Mendoza, J.G.G. (2017), "Synthesis and applications of low silica zeolites from Bolivian clay and diatomaceous earth", Ph.D. Dissertation, Lulea University of Technology, Lulea, Sweden.
  20. Mgbemere, H.E., Lawal, G.I., Ekpe, I.C. and Chaudhary, A.L. (2018), "Synthesis of zeolite-A using kaolin samples from Darazo, Bauchi State and Ajebo, Ogun State in Nigeria", Niger. J. Technol., 37(1), 87-95. https://doi.org/10.4314/njt.v37i1.12.
  21. Muskoya, N.M., Petrik, L.F., Hums, E., Kuhnt, A. and Schwieger, W. (2015), "Thermal stability studies of zeolites A and X synthesized from South African coal fly ash", Res. Chem. Intermed., 41, 575-582. https://doi.org/10.1007/s11164-013-1211-3.
  22. Ojumu, T.V., Plessis, P.W.D. and Petrik, L.F. (2016), "Synthesis of zeolite A from coal fly ash using ultrasonic treatment - A replacement for fusion step", Ultrason. Sonochem., 31, 342-349. https://doi.org/10.1016/j.ultsonch.2016.01.016.
  23. Otieno, S., Kowenje, C., Kengara, F. and Mokaya, R. (2021), "Effect of kaolin pre-treatment method and NaOH levels on the structure and properties of kaolin-derived faujasite zeolites", Mater. Adv., 2, 5997-6010. https://doi.org/10.1039/D1MA00449B.
  24. Pavlov, M.L., Travkina, O.S., Khazipova, A.N., Basimova, R.A., Shavaleeva, N.N. and Kutepov, B.I. (2015), "Synthesis of Ultrafine and binder-free granular zeolite Y from kaoli", Petrol. Chem., 55(7), 552-556. https://doi.org/10.1134/S0965544115070105.
  25. Salahudeen, N. and Ahmed, A.S. (2017), "Synthesis of hexagonal zeolite Y from Kankara kaolin using a split technique", J. Inclus. Phenom. Macrocycl. Chem., 87, 14-156. https://doi.org/10.1007/s10847-016-0686-0.
  26. Srilai, S., Tanwongwan, W., Onpecth, K., Wongkitikun, T., Panpiemrasda, K., Panomsuwan, G. and Eiad-Ua, A. (2019), "Synthesis of zeolite X from bentonite via hydrothermal method", Mater. Sci. Forum, 990, 144-148. https://doi.org/10.4028/www.scientific.net/MSF.990.144.
  27. Verboekend, D., Nuttens, N., Locus, R., Aelst, J.V., Verolme, P., Groen, J.C., Perez-Ramirez, J. and Sels, B.F. (2016), "Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions", Chem. Soc. Rev., 45, 3331-3352. https://doi.org/10.1039/C5CS00520E.
  28. Wang, C., Zhou, J., Wang, Y., Yang, M., Li, Y. and Meng, C. (2013), "Synthesis of zeolite X from low-grade bauxite", J. Chem. Technol. Biotechnol., 88(7), 1350-1357. https://doi.org/10.1002/jctb.3983.
  29. Zhu, T., Zhang, X., Han, Y., Liu, T., Wang, B. and Zhang, Z. (2019), "Preparation of zeolite X by the Aluminum residue from coal fly ash for the adsorption of volatile organic compounds", Front. Chem., 7, 341-348. https://doi.org/10.3389/fchem.2019.00341.